Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human

Abstract

Instability of CAG DNA trinucleotide repeats is the mutational mechanism for several neurodegenerative diseases resulting in the expansion of a polyglutamine (polyQ) tract. Proteins with long polyQ tracts have an increased tendency to aggregate, often as truncated fragments forming ubiquitinated intranuclear inclusion bodies. We examined whether similar features define spinocerebellar ataxia type 2 (SCA2) pathogenesis using cultured cells, human brains and transgenic mouse lines. In SCA2 brains, we found cytoplasmic, but not nuclear, microaggregates. Mice expressing ataxin-2 with Q58 showed progressive functional deficits accompanied by loss of the Purkinje cell dendritic arbor and finally loss of Purkinje cells. Despite similar functional deficits and anatomical changes observed in ataxin-1[Q80] transgenic lines, ataxin-2[Q58] remained cytoplasmic without detectable ubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic map of ataxin-2.
Figure 2: Expression of ataxin-2.
Figure 3: Immunohistochemical staining of cerebellar sections from a normal individual (ac) and an SCA2 patient with 58 CAG repeats (df).
Figure 4: Expression of the human ataxin-2 transgene in mice as seen by RT–PCR and western-blot analyses.
Figure 7: Expression and localization of ataxin-2 in Purkinje cells.
Figure 5: Progressive functional loss in lines Q58-5B, Q58-11 and Q58-19.
Figure 6: Calbindin-28K labelling of cerebella of heterozygous Q58-5B (a), Q58-11 (b) and Q58-19 (c) animals at 27 weeks, and wild-type and homozygous Q58-11 mice at 4 weeks (d,g), 7 weeks (e,h) and 14 weeks (f,i) .

Similar content being viewed by others

References

  1. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  2. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet 8, 221–228 (1994)

    Article  CAS  Google Scholar 

  3. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α-1A-voltage-dependent calcium channel. Nature Genet. 15, 62–69 (1997).

    Article  CAS  Google Scholar 

  4. David, G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet. 17, 65–70 (1997).

    Article  CAS  Google Scholar 

  5. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  6. La Spada, A.R, Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  7. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  Google Scholar 

  8. Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genet. 19, 148–154 (1998).

    Article  CAS  Google Scholar 

  9. Paulson, H.L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    Article  CAS  Google Scholar 

  10. Trottier, Y. et al. Heterogeneous intracellular localization and expression of ataxin-3. Neurobiol. Dis. 5, 335–347 (1998).

    Article  CAS  Google Scholar 

  11. Holmberg, M. et al. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 7, 913–918 (1998).

    Article  CAS  Google Scholar 

  12. Igarashi, S. et al. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nature Genet. 18, 111–117 (1998).

    Article  CAS  Google Scholar 

  13. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  14. Martindale, D. et al. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genet. 18, 150–154 (1998).

    Article  CAS  Google Scholar 

  15. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  16. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  17. Stenoien, D.L. et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 8, 731–741 (1999).

    Article  CAS  Google Scholar 

  18. Reddy, P.H. et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nature Genet. 20, 198–202 (1998).

    Article  CAS  Google Scholar 

  19. Paulson, H.L. Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis) fold. Am. J. Hum. Genet. 64, 339–345 (1999).

    Article  CAS  Google Scholar 

  20. Gutekunst, C.A. et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534 (1999).

    Article  CAS  Google Scholar 

  21. Kuemmerle, S. et al. Huntington aggregates may not predict neuronal death in Huntington's disease. Ann. Neurol. 46, 842–849 (1999).

    Article  CAS  Google Scholar 

  22. Klement, I.A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  Google Scholar 

  23. Cummings, C.J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892 (1999).

    Article  CAS  Google Scholar 

  24. Ishikawa, K. et al. Abundant expression and cytoplasmic aggregations of [α]1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet. 8, 1185–1193 (1999).

    Article  CAS  Google Scholar 

  25. Nechiporuk, T. et al. The mouse SCA2 gene: cDNA sequence, alternative splicing, and protein expression. Hum. Mol. Genet. 7, 1301–1309 (1998).

    Article  CAS  Google Scholar 

  26. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14, 285–291 (1996).

    Article  CAS  Google Scholar 

  27. Pulst, S.-M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269–276 (1996).

    Article  CAS  Google Scholar 

  28. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996).

    Article  CAS  Google Scholar 

  29. Huynh, D.P., Del Bigio, M.R., Ho, D.H. & Pulst, S.-M. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2. Ann. Neurol. 45, 232–241 (1999).

    Article  CAS  Google Scholar 

  30. Koyano, S. et al. Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study. Neurosci. Lett. 273, 117–120 (1999).

    Article  CAS  Google Scholar 

  31. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    Article  CAS  Google Scholar 

  32. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  Google Scholar 

  33. Mangiarini, L. et al. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nature Genet. 15, 197–200 (1997).

    Article  CAS  Google Scholar 

  34. Davies, S.W. et al. From neuronal inclusions to neurodegeneration: neuropathological investigation of a transgenic mouse model of Huntington's disease. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 981–989 (1999).

    Article  CAS  Google Scholar 

  35. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  Google Scholar 

  36. Clark, H.B. et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17, 7385–7395 (1997).

    Article  CAS  Google Scholar 

  37. Vandaele, S. et al. Purkinje cell protein-2 regulatory regions and transgene expression in cerebellar compartments. Genes Dev. 5, 1136–1148 (1991).

    Article  CAS  Google Scholar 

  38. Paulson, H.L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    Article  CAS  Google Scholar 

  39. Hodgson, J.G. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selectivity striatal neurodegeneration. Neuron 23, 181–192 (1999).

    Article  CAS  Google Scholar 

  40. Sanchez, I. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633 (1999).

    Article  CAS  Google Scholar 

  41. Kim, M. et al. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19, 964–973 (1999).

    Article  CAS  Google Scholar 

  42. Wellington, C.L. et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167 (1998).

    Article  CAS  Google Scholar 

  43. Vig, P.J. et al. Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology 50, 106–113 (1998).

    Article  CAS  Google Scholar 

  44. Koeppen, A.H. The Purkinje cell and its afferents in human hereditary ataxia. J. Neuropathol. Exp. Neurol. 50, 505–514 (1991).

    Article  CAS  Google Scholar 

  45. Chai, Y. et al. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8, 673–682 (1999).

    Article  CAS  Google Scholar 

  46. Garcia-Mata, R. et al. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254 (1999).

    Article  CAS  Google Scholar 

  47. Johnston, J.A., Ward, C.L. & Kopito, R.R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898 (1998).

    Article  CAS  Google Scholar 

  48. Shibata, H., Huynh, D.P. & Pulst S.-M. A novel protein with RNA binding motifs interacts with ataxin-2. Hum. Mol. Genet. 9, 130–1313 (2000).

    Article  Google Scholar 

  49. Mezey, E. et al. α synuclein is present in Lewy bodies in sporadic Parkinson's disease. Mol. Psychiatry 3, 493–499 (1998).

    Article  CAS  Google Scholar 

  50. Lippa, C.F. et al. Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer's disease patients with mutations in presenilin and amyloid precursor protein genes. Am. J. Pathol. 153, 1365–1370 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Koeppen and M. Del Bigio for tissue samples from SCA2 patients; H. Orr for the pZ03-β-Gal expression vector with the Pcp2 promoter; C. Readhead and M. Schibler for assistance with transgenic mouse lines and confocal microscopy, respectively; T. Ho, A. Schlesinger and M. Dy for technical support; and D. Scoles and T.-R. Kiehl for critically reading the manuscript. This work was supported by the Carmen and Louis Warschaw Endowment for Neurology, F.R.I.E.N.D.s of Neurology, the National Ataxia Foundation, grant RO1-NS33123 (SMP) and a Long Term Disabled Scientist Supplement (DPH) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan-M. Pulst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, D., Figueroa, K., Hoang, N. et al. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26, 44–50 (2000). https://doi.org/10.1038/79162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing