Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein kinase C modulates NMDA receptor trafficking and gating

Abstract

Regulation of neuronal N-methyl-d-aspartate receptors (NMDARs) by protein kinases is critical in synaptic transmission. However, the molecular mechanisms underlying protein kinase C (PKC) potentiation of NMDARs are uncertain. Here we demonstrate that PKC increases NMDA channel opening rate and delivers new NMDA channels to the plasma membrane through regulated exocytosis. PKC induced a rapid delivery of functional NMDARs to the cell surface and increased surface NR1 immunofluorescence in Xenopus oocytes expressing NMDARs. PKC potentiation was inhibited by botulinum neurotoxin A and a dominant negative mutant of soluble NSF-associated protein (SNAP-25), suggesting that receptor trafficking occurs via SNARE-dependent exocytosis. In neurons, PKC induced a rapid delivery of functional NMDARs, assessed by electrophysiology, and an increase in NMDAR clusters on the surface of dendrites and dendritic spines, as indicated by immunofluorescence. Thus, PKC regulates NMDAR channel gating and trafficking in recombinant systems and in neurons, mechanisms that may be relevant to synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PKC activator TPA potentiates NMDA single channel activity.
Figure 2: PKC increases NMDA channel opening rate and the number of active channels at the oocyte surface.
Figure 3: PKC promotes delivery of NMDA channels to the oocyte membrane via exocytosis.
Figure 4: A dominant negative mutant of SNAP-25 reduces PKC potentiation of NMDARs.
Figure 5: PKC-regulated exocytosis is fast relative to constitutive exocytosis of NMDARs.
Figure 6: Activation of PKC increases NR1 abundance at the cell surface.
Figure 7: TPA increases NR1 surface immunofluorescence.
Figure 8: PKC promotes increases in functional NMDA channels in the plasma membrane of hippocampal neurons.
Figure 9: PKC activation increases NR1 surface immunofluorescence in hippocampal neurons.

Similar content being viewed by others

References

  1. Carroll, R. C., Nicoll, R. A. & Malenka, R. C. Effects of PKA and PKC on miniature excitatory postsynaptic currents in CA1 pyramidal cells. J. Neurophysiol. 80, 2797–2800 (1998).

    Article  CAS  Google Scholar 

  2. Hrabetova, S. & Sacktor, T. C. Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression. J. Neurosci. 16, 5324–5333 (1996).

    Article  CAS  Google Scholar 

  3. Hu, G. Y. et al. Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328, 426–429 (1987).

    Article  CAS  Google Scholar 

  4. Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  5. Sweatt, J. D. et al. Protected-site phosphorylation of protein kinase C in hippocampal long-term potentiation. J. Neurochem. 71, 1075–1085 (1998).

    Article  CAS  Google Scholar 

  6. Malinow, R., Schulman, H. & Tsien, R. W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866 (1989).

    Article  CAS  Google Scholar 

  7. Abeliovich, A. et al. Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75, 1253–1262 (1993).

    Article  CAS  Google Scholar 

  8. Chen, L. & Huang, L. Y. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521–523 (1992).

    Article  CAS  Google Scholar 

  9. Gerber, G., Kangrga, I., Ryu, P. D., Larew, J. S. & Randic, M. Multiple effects of phorbol esters in the rat spinal dorsal horn. J. Neurosci. 9, 3606–3617 (1989).

    Article  CAS  Google Scholar 

  10. Xiong, Z. G. et al. Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol. Pharmacol. 54, 1055–1063 (1998).

    Article  CAS  Google Scholar 

  11. Zheng, X., Zhang, L., Wang, A. P., Bennett, M. V. & Zukin, R. S. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc. Natl. Acad. Sci. USA 96, 15262–15267 (1999).

    Article  CAS  Google Scholar 

  12. Aniksztejn, L., Bregestovski, P. & Ben-Ari, Y. Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur. J. Pharmacol. 205, 327–328 (1991).

    Article  CAS  Google Scholar 

  13. Kelso, S. R., Nelson, T. E. & Leonard, J. P. Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J. Physiol. (Lond) 449, 705–718 (1992).

    Article  CAS  Google Scholar 

  14. Chen, L. & Huang, L. Y. Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron 7, 319–326 (1991).

    Article  Google Scholar 

  15. Markram, H. & Segal, M. Acetylcholine potentiates responses to N-methyl-D-aspartate in the rat hippocampus. Neurosci. Lett. 113, 62–65 (1990).

    Article  CAS  Google Scholar 

  16. Yu, S. P., Sensi, S. L., Canzoniero, L. M., Buisson, A. & Choi, D. W. Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J. Physiol. (Lond.) 499, 721–732 (1997).

    Article  CAS  Google Scholar 

  17. Leonard, A. S. & Hell, J. W. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J. Biol. Chem. 272, 12107–12115 (1997).

    Article  CAS  Google Scholar 

  18. Tingley, W. G. et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157–5166 (1997).

    Article  CAS  Google Scholar 

  19. Strong, J. A., Fox, A. P., Tsien, R. W. & Kaczmarek, L. K. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325, 714–717 (1987).

    Article  CAS  Google Scholar 

  20. Connolly, C. N. et al. Cell surface stability of gamma-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem. 274, 36565–36572 (1999).

    Article  CAS  Google Scholar 

  21. Filippova, N., Dudley, R. & Weiss, D. S. Evidence for phosphorylation-dependent internalization of recombinant human rho1 GABAC receptors. J. Physiol. (Lond.) 518, 385–399 (1999).

    Article  CAS  Google Scholar 

  22. Yamada, Y., Chochi, Y., Takamiya, K., Sobue, K. & Inui, M. Modulation of the channel activity of the epsilon2/zeta1-subtype N-methyl D-aspartate receptor by PSD-95. J. Biol. Chem. 274, 6647–6652 (1999).

    Article  CAS  Google Scholar 

  23. Bennett, M. K. & Scheller, R. H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90, 2559–2563 (1993).

    Article  CAS  Google Scholar 

  24. Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19, 7781–7792 (1999).

    Article  CAS  Google Scholar 

  25. Rosenmund, C., Feltz, A. & Westbrook, G. L. Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795 (1995).

    Article  CAS  Google Scholar 

  26. Jahr, C. E. High probability opening of NMDA receptor channels by L-glutamate. Science 255, 470–472 (1992).

    Article  CAS  Google Scholar 

  27. Yao, Y., Ferrer-Montiel, A. V., Montal, M. & Tsien, R. Y. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98, 475–485 (1999).

    Article  CAS  Google Scholar 

  28. Zampighi, G.A., Loo, D. D., Kreman, M., Eskandari, S. & Wright, E. M. Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J. Gen. Physiol. 113, 507–524 (1999).

    Article  CAS  Google Scholar 

  29. Akabas, M. H., Stauffer, D. A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 (1992).

    Article  CAS  Google Scholar 

  30. Chen, N., Luo, T. & Raymond, L. A. Subtype-dependence of NMDA receptor channel open probability. J. Neurosci. 19, 6844–6854 (1999).

    Article  CAS  Google Scholar 

  31. Gazzaley, A. H., Weiland, N. G., McEwen, B. S. & Morrison, J. H. Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J. Neurosci. 16, 6830–6838 (1996).

    Article  CAS  Google Scholar 

  32. Lu, W. Y. et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. 2, 331–338 (1999).

    Article  CAS  Google Scholar 

  33. Genoud, S. et al. Activity-dependent phosphorylation of SNAP-25 in hippocampal organotypic cultures. J. Neurochem. 72, 1699–1706 (1999).

    Article  CAS  Google Scholar 

  34. Shimazaki, Y. et al. Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J. Biol. Chem. 271, 14548–14553 (1996).

    Article  CAS  Google Scholar 

  35. Mori, H., Yamakura, T., Masaki, H. & Mishina, M. Involvement of the carboxyl-terminal region in modulation by TPA of the NMDA receptor channel. Neuroreport 4, 519–522 (1993).

    Article  CAS  Google Scholar 

  36. Pisani, A., Calabresi, P., Centonze, D. & Bernardi, G. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br. J. Pharmacol. 120, 1007–1014 (1997).

    Article  CAS  Google Scholar 

  37. Chen, F. et al. Botulinum neurotoxin B inhibits insulin-stimulated glucose uptake into 3T3-L1 adipocytes and cleaves cellubrevin unlike type A toxin which failed to proteolyze the SNAP-23 present. Biochemistry 36, 5719–5728 (1997).

    Article  CAS  Google Scholar 

  38. Rossetto, O. et al. SNARE motif and neurotoxins. Nature 372, 415–416 (1994).

    Article  CAS  Google Scholar 

  39. Huh, K. H. & Wenthold, R. J. Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J. Biol. Chem. 274, 151–157 (1999).

    Article  CAS  Google Scholar 

  40. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  Google Scholar 

  41. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  Google Scholar 

  42. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400 (1998).

    Article  CAS  Google Scholar 

  43. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  44. Lieberman, D. N. & Mody, I. Regulation of NMDA channel function by endogenous Ca2+- dependent phosphatase. Nature 369, 235–239 (1994).

    Article  CAS  Google Scholar 

  45. Wang, Y. T. & Salter, M. W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994).

    Article  CAS  Google Scholar 

  46. Lledo, P. M., Zhang, X., Sudhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  Google Scholar 

  47. Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  Google Scholar 

  48. Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352–357 (1999).

    Article  CAS  Google Scholar 

  49. Banker, G. & Goslin, K. Developments in neuronal cell culture. Nature 336, 185–186 (1988).

    Article  CAS  Google Scholar 

  50. Hollmann, M., Maron, C. & Heinemann, S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331–1343 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Bassell and D. Faber for their helpful comments on the manuscript and A.P. Wang and M. Martinez for technical support. We acknowledge the Analytical Imaging Facility of the Albert Einstein College of Medicine (M. Cammer, Director). This work was supported by NIH grants NS 20752 and NS 31282 (to R.S.Z.) and NS 07512 (to M.V.L.B.). M.V.L.B. is the Sylvia and Robert S. Olnick Professor of Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. L. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Jy., Skeberdis, V., Jover, T. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4, 382–390 (2001). https://doi.org/10.1038/86028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing