Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of a voltage-dependent K+ channel

Abstract

Voltage-dependent K+ channels are members of the family of voltage-dependent cation (K+, Na+ and Ca2+) channels that open and allow ion conduction in response to changes in cell membrane voltage. This form of gating underlies the generation of nerve and muscle action potentials, among other processes. Here we present the structure of KvAP, a voltage-dependent K+ channel from Aeropyrum pernix. We have determined a crystal structure of the full-length channel at a resolution of 3.2 Å, and of the isolated voltage-sensor domain at 1.9 Å, both in complex with monoclonal Fab fragments. The channel contains a central ion-conduction pore surrounded by voltage sensors, which form what we call ‘voltage-sensor paddles’—hydrophobic, cationic, helix–turn–helix structures on the channel's outer perimeter. Flexible hinges suggest that the voltage-sensor paddles move in response to membrane voltage changes, carrying their positive charge across the membrane.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the KvAP channel.
Figure 2: Stereo view of the KvAP pore and comparison with the KcsA K+ channel.
Figure 3: Architecture of the KvAP channel.
Figure 4: Functional and structural analysis of the isolated voltage-sensor domain.
Figure 5: Structure of the isolated voltage sensor.
Figure 6: The voltage-sensor paddle is conserved.
Figure 7: Effect of Fabs on voltage-sensor conformation.
Figure 8: Hypothesis for gating charge movements.

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 2001)

    Google Scholar 

  2. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Article  CAS  Google Scholar 

  3. Armstrong, C. M. & Bezanilla, F. Charge movement associated with the opening and closing of the activation gates of the Na+ channels. J. Gen. Physiol. 63, 533–552 (1974)

    Article  CAS  Google Scholar 

  4. Sigworth, F. J. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994)

    Article  CAS  Google Scholar 

  5. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    Article  CAS  Google Scholar 

  6. Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    Article  CAS  Google Scholar 

  8. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    Article  CAS  Google Scholar 

  9. Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984)

    Article  ADS  CAS  Google Scholar 

  10. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318 (1987)

    Article  ADS  CAS  Google Scholar 

  11. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, L. Y. & Jan, Y. N. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 (1987)

    Article  ADS  CAS  Google Scholar 

  12. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995)

    Article  CAS  Google Scholar 

  13. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the Shaker K+ channel S4. Neuron 16, 387–397 (1996)

    Article  CAS  Google Scholar 

  14. Yusaf, S. P., Wray, D. & Sivaprasadarao, A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch. 433, 91–97 (1996)

    Article  CAS  Google Scholar 

  15. Baker, O. S., Larsson, H. P., Mannuzzu, L. M. & Isacoff, E. Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in Shaker K+ channel gating. Neuron 20, 1283–1294 (1998)

    Article  CAS  Google Scholar 

  16. Mannuzzu, L. M., Moronne, M. M. & Isacoff, E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Cha, A. & Bezanilla, F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140 (1997)

    Article  CAS  Google Scholar 

  18. Horn, R. Coupled movements in voltage-gated ion channels. J. Gen. Physiol. 120, 449–453 (2002)

    Article  CAS  Google Scholar 

  19. Gandhi, C. S. & Isacoff, E. Y. Molecular models of voltage sensing. J. Gen. Physiol. 120, 455–463 (2002)

    Article  CAS  Google Scholar 

  20. Bezanilla, F. Voltage sensor movements. J. Gen. Physiol. 120, 465–473 (2002)

    Article  CAS  Google Scholar 

  21. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422, 180–185; advance online publication, 2 March 2003 (doi:10.1038/nature01473)

  22. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Swartz, K. J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997)

    Article  CAS  Google Scholar 

  28. Swartz, K. J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673 (1997)

    Article  CAS  Google Scholar 

  29. Lu, Z., Klem, A. M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Santacruz-Toloza, L., Huang, Y., John, S. A. & Papazian, D. M. Glycosylation of Shaker potassium channel protein in insect cell culture and in Xenopus oocytes. Biochemistry 33, 5607–5613 (1994)

    Article  CAS  Google Scholar 

  31. Blaustein, R. O., Cole, P. A., Williams, C. & Miller, C. Tethered blockers as molecular ‘tape measures’ for a voltage-gated K+ channel. Nature Struct. Biol. 7, 309–311 (2000)

    Article  CAS  Google Scholar 

  32. Slatin, S. L., Qiu, X. Q., Jakes, K. S. & Finkelstein, A. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371, 158–161 (1994)

    Article  ADS  CAS  Google Scholar 

  33. Qiu, X. Q., Jakes, K. S., Kienker, P. K., Finkelstein, A. & Slatin, S. L. Major transmembrane movement associated with colicin Ia channel gating. J. Gen. Physiol. 107, 313–328 (1996)

    Article  CAS  Google Scholar 

  34. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989)

    Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  36. Collaborative Computational Project, N.4 The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  37. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  38. Brunger, A. T., Leahy, D. J., Hynes, T. R. & Fox, R. O. 2.9 Å resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. J. Mol. Biol. 221, 239–256 (1991)

    CAS  PubMed  Google Scholar 

  39. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  40. Brunger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  41. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single Streptomyces lividans K+ channels. Functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999)

    Article  CAS  Google Scholar 

  42. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997)

    Article  CAS  Google Scholar 

  43. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the MacKinnon laboratory for assistance at many stages of this project over five years, M. Long for biochemistry at early stages, J. Lee for studies of Ba2+ on cell growth, D. Wang for teaching us to use the electron microscope, F. Weis-Garcia for assistance with monoclonal antibodies, the staff at CHESS A1 and F1 and NSLSX25, O. Andersen and D. Gadsby for manuscript critique, and R. Mohan for graphic work. This work was supported in part by a National Institutes of Health (NIH) grant to R.M., and by the National Center for Research Resources, NIH to B.T.C. V.R. is supported by a National Science Foundation Graduate Student Research Fellowship, and R.M. is an Investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick MacKinnon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Lee, A., Chen, J. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003). https://doi.org/10.1038/nature01580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01580

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing