Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus

Abstract

We have found mutations in the Menkes disease gene (MNK) which impair, but do not abolish, correct mRNA splicing in patients with less severe clinical phenotypes. In one family, four males aged 2–36 years with a distinctive Menkes variant have a mutation at the +3 position of a splice donor site near the 3′ end of the Menkes coding sequence that is associated with exon skipping and a stable mutant transcript. In an unrelated 15-year-old male with typical occipital horn syndrome, a point mutation at the −2 exonic position of a splice donor site in the middle of the gene causes exon-skipping and activation of a cryptic splice acceptor site. In both mutations, maintenance of some normal splicing is demonstrable by RT-PCR, cDNA sequencing and ribonuclease protection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Danks, D.M. Disorders of copper transport: Menkes disease and the occipital horn syndrome. in Connective Tissue and its Heritable Disorders: Molecular, genetic and medical aspects (eds Royce, P. M. & Steinmann, B.U.) 487–505 (Wiley-Liss, New York, 1993).

    Google Scholar 

  2. Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Chelly, J. et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Mercer, J.F.B. et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Odermatt, A., Suter, H., Krapf, R. & Solioz, M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae . J. biol. Chem. 268, 12775–12779 (1993).

    CAS  PubMed  Google Scholar 

  6. Levinson, B. et al. The mottled gene is the mouse homologue of the Menkes disease gene. Nature Genet. 6, 369–373 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Mercer, J.F.B. et al. Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nature Genet. 6, 374–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. & Cox, D.W., Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5, 327–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Lazoff, S.G., Rybak, J.J., Parker, B.R. & Luzzatti, L. Skeletal dysplasia, occipital horns, diarrhea and obstructive uropathy — a new hereditary syndrome. Birth Defects 11, 71–74 (1975).

    CAS  PubMed  Google Scholar 

  10. Byers, P.H. et al. X-linked cutis laxa. Defective cross-link formation in collagen due to decreased lysyl oxidase activity. New Engl. J. Med. 303, 61–65 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Kuivaniemi, H., Peltonen, L., Palotie, A., Kaitila, I. & Kivirikko, K.I. Abnormal copper metabolism and deficient lysyl oxidase activity in a heritable connective tissue disorder. J. clin. Invest. 69, 730–733 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sartoris, D.J. et al. Type IX Ehlers-Danlos syndrome: A new variant with pathognomonic radiographic features. Radiology 152, 665–670 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Danks, D.M. The mild form of Menkes' disease: progress report on the original case. Am. J. med. Genet. 30, 859–864 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Levinson, B. et al. Are X-linked cutis laxa and Menkes disease allelic? Nature Genet. 3, 6 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Tsukahara, M., Imaizumi, K., Kawai, S. & Kajii, T. Occipital horn syndrome: report of a case and review of the literature. Clin. Genet. 45, 32–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Kaler, S.G., Goldstein, D.S., Holmes, C., Salerno, J.A. & Gahl, W.A. Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann. Neurol. 33, 171–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Newton, C.R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl. Acids Res. 17, 2503–2516 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Urlaub, G., Mitchell, P.J., Ciudad, C.J. & Chasin, L.A. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Molec. cell. Biol. 9, 2868–2880 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mclntosh, I., Hamosh, A. & Dietz, H.C. Nonsense mutations and diminished mRNA levels. Nature Genet. 4, 219 (1993).

    Article  Google Scholar 

  20. Daar, I.O. & Maquat, L.E. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Molec. cell. Biol. 8, 802–813 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, J, Fogel-Petrovic, M. & Maquat, L.E. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate isomerase mRNA. Molec. cell. Biol. 10, 5215–5255 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horowitz, D.S. & Krainer, A.R. Mechanisms for selecting 5′ splice sites in mammalian pre-mRNA splicing. Trends Genet. 10, 100–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Mount, S.M. A catalogue of splice junction sequences. Nucl. Acids Res. 10, 459–472 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Biaggioni, I., Goldstein, D.S., Atkinson, T. & Robertson, D. Dopamine-beta hydroxylase deficiency in humans. Neurology 40, 370–373 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein, D.S. et al. Positron emission imaging of cardiac sympathetic innervation and function using 18F-6-fluorodopamine: effects of chemical sympathectomy by 6-hydroxydopamine. J. Hypertension 9, 417–423 (1991).

    Article  CAS  Google Scholar 

  27. Tsusui, K. & Terada, Y. On the mechanism of diarrhea due to reserpine. Mie. Med. J. 17, 273–281 (1968).

    Google Scholar 

  28. Westman, J.A., Richardson, D.C., Rennert, O.M. & Morrow, G. Atypical Menkes' steely hair disease. Am. J. med. Genet. 30, 853–858 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Gerdes, A.-M. et al. Variability in clinical expression of Menkes syndrome. Eur. J. Pediatr. 148, 132–135 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaler, S., Gallo, L., Proud, V. et al. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat Genet 8, 195–202 (1994). https://doi.org/10.1038/ng1094-195

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1094-195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing