Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats

Abstract

Two forms of the neurodegenerative disorder spinocerebellar ataxia are known to be caused by the expansion of a CAG (polyglutamine) trinucleotide repeat. By screening cDNA expression libraries, using an antibody specific for polyglutamine repeats, we identified six novel genes containing CAG stretches. One of them is mutated in patients with spinocerebellar ataxia linked to chromosome 12q (SCA2). This gene shows ubiquitous expression and encodes a protein of unknown function. Normal SCA2 alleles (17 to 29 CAG repeats) contain one to three CAAs in the repeat. Mutated alleles (37 to 50 repeats) appear particularly unstable, upon both paternal and maternal transmissions. The sequence of three of them revealed pure CAG stretches. The steep inverse correlation between age of onset and CAG number suggests a higher sensitivity to polyglutamine length than in the other polyglutamine expansion diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harding, A.E. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 105, 1–28 (1982).

    Article  CAS  Google Scholar 

  2. Zoghbi, H.Y. The spinocerebellar degenerations. Curr Neurol. 11, 121–144 (1991).

    Google Scholar 

  3. Orozco, G., Nodarse, A., Cotdoves, R. & Auburger, G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 40, 1369–1375 (1990).

    Article  Google Scholar 

  4. Ranum, L.P. et al. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am. J. Hum. Genet. 57, 603–608 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q321.. Nature Genet. 8, 221–228 (1995).

    Article  Google Scholar 

  6. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  7. Allotey, R. et al. The spinocerebellar ataxia 2 locus is located within a 3-cM interval on chromosome 12q23–24.1. Am. J. Hum. Genet. 57, 185–189 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gispert, S. et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1. Nature Genet. 4, 295–299 (1993).

    Article  CAS  Google Scholar 

  9. Myers, R.H. et al. De novo expansion of a (CAG)n repeat in sporadic Huntingdon's disease. Nature Genet. 5, 168–173 (1993).

    Article  CAS  Google Scholar 

  10. Bürk, K. et al. Autosomal dominant cerebellar ataxia type I: Clinical feature and magnetic resonance imaging in families with SCA1, SCA2 and SCA3. Brain (in the press).

  11. Benomar, A. et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1. Nature Genet. 10, 84–88 (1995).

    Article  CAS  Google Scholar 

  12. Holmberg, M. et al. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12–p21.1 Hum. Mol. Genet. 4, 1441–1445 (1995).

    Article  CAS  Google Scholar 

  13. Paulson, H.L. & Fischbeck, K.H. Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19, 79–107 (1996).

    Article  CAS  Google Scholar 

  14. Ranen, N.G. et al. Anticipation and instability of IT-15 (CAG)n repeats in parent–offspring pairs with Huntington disease. Am. J. Hum. Genet. 57, 593–602 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kremer, B. et al. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am. J. Hum. Genet. 57, 343–350 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Duyao, M.P. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet. 4, 387–392 (1993).

    Article  CAS  Google Scholar 

  17. Trottier, Y., Biancalana, V. & Mandel, J.L. Instability of CAG repeats in Huntington's disease: relation of parental transmission and age of onset. J. Med. Genet. 31, 377–382 (1994).

    Article  CAS  Google Scholar 

  18. Chung, M.Y. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genet. 5, 254–258 (1993).

    Article  CAS  Google Scholar 

  19. Ikeuchi, T. et al. Dentatorubral-pallidoluysian atrophy: Clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 37, 769–775 (1995).

    Article  CAS  Google Scholar 

  20. La Spada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet. 2, 301–304 (1992).

    Article  CAS  Google Scholar 

  21. Biancalana, V. et al. Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum. Mol. Genet. 1, 255–258 (1992).

    Article  CAS  Google Scholar 

  22. Igaraschi, S. et al. Intergenerational instability of the CAG repeat of the gene for Machado-Joseph (MJD1) is affected by the genotype of normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. Hum. Mol. Genet. 5, 923–932 (1996).

    Article  Google Scholar 

  23. Dürr, A. et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann. Neurol. 39, 490–499 (1996).

    Article  Google Scholar 

  24. Ross, C.A., Mclnnis, M.G., Margolis, R.L. & Li, S.-H. Genes with triplets: candidate mediators of neuropsychiatric disorders. Trends Neurosci. 16, 254–260 (1993).

    Article  CAS  Google Scholar 

  25. Lescure, A. et al. The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J. 13, 1166–1175 (1995).

    Article  Google Scholar 

  26. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  Google Scholar 

  27. Dürr, A. et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies): clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118, 1573–1581 (1995).

    Article  Google Scholar 

  28. Belal, S. et al. Clinical and genetic analysis of a tunisian family with autosomal dominant cerebellar ataxia type 1 linked to the SCA2 locus. Neurology 44, 1423–1426 (1994).

    Article  CAS  Google Scholar 

  29. Ihara, T. et al. Genetic heterogeneity of dominantly inherited olivopontocerebellar atrophy (OPCA) in the Japanese: linkage study of two pedigrees and evidence for the disease locus on chromosome 12q (SCA2). Jap. J. Hum. Genet. 39, 305–313 (1994).

    Article  CAS  Google Scholar 

  30. Gispert, S. et al. Localization of the candidate gene D-amino acid oxidase outside the refined I-cM region of spinocerebellar ataxia 2. Am. J. Hum. Genet. 57, 972–975 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lezin, A. et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies): genetic analysis of three unrelated SCA2 families. Hum. Genet. 97, 671–676 (1996).

    Article  CAS  Google Scholar 

  32. Chiba, H., Muramatsu, M., Nomoto, A. & Kato, H. Two human homologues of Saccharomyoes cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucl. Acids Res. 22, 1815–1820 (1994).

    Article  CAS  Google Scholar 

  33. Kang, S., Jaworski, A., Ohshima, K. & Wells, R. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. Coli. Nature Genet. 10, 213–218 (1995).

    Article  CAS  Google Scholar 

  34. Krauter, K. et al. A second-generation YAC contig map of human chromosome 12. Nature 377, 321–333 (1995).

    CAS  Google Scholar 

  35. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  36. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DMA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  37. Jiang, J.-X., Lekanne Deprez, R., Zwarthoff, E. & Riegman, P. Characterization of four novel CAG repeat-containing cDNAs. Genomics 30, 91–93 (1995).

    Article  CAS  Google Scholar 

  38. Gastier, J.M. et al. Development of a screening set for new (CAG/CTG)n dynamic mutations. Genomics 32, 75–85 (1996).

    Article  CAS  Google Scholar 

  39. Li, S.H., Mclnnis, M.G., Margolis, R.L., Antonarakis, S.E. & Ross, C.A. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics 16, 572–579 (1993).

    Article  CAS  Google Scholar 

  40. Riggins, G.J. et al. Human genes containing polymorphic trinucleotide repeats [published erratum appears in Nature Genet. 3, 273 (1993)]. Nature Genet. 2, 186–191 (1992).

    Article  CAS  Google Scholar 

  41. Neri, C. et al. Survey of CAG/CTG repeats in human cDNAs representing new genes: candidates for inherited neurological disorders. Hum. Mol. Genet. 5, 1001–1009 (1996).

    Article  CAS  Google Scholar 

  42. Ross, C. When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496 (1995).

    Article  CAS  Google Scholar 

  43. Rubinsztein, D.C. et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am. J. Hum. Genet. 59, 16–22 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kremer, B. et al. A worldwide study of the Huntington's disease mutation: the sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 330, 1402–1406 (1994).

    Article  Google Scholar 

  45. Maruyama, H. et al. Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease. Hum. Mol. Genet. 4, 807–812 (1995).

    Article  CAS  Google Scholar 

  46. Chong, S.S. et al. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 10, 344–350 (1995).

    Article  CAS  Google Scholar 

  47. Hansen, R.S., Canfield, T.K., Lamb, M.M., Gartler, S.M. & Laird, C.D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    Article  CAS  Google Scholar 

  48. Gusella, J.F. & MacDonald, M.E. Huntington's disease: CAG genetics expands neurobiology. Curr. Opin. Neurobiol. 5, 656–662 (1995).

    Article  CAS  Google Scholar 

  49. Ranum, L.P. et al. Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the age at onset. Am. J. Hum. Genet. 55, 244–252 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Imbert, G., Trottier, Y., Beckman, J. & Mandel, J.-L. The gene for the TATA-binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 21, 667–668 (1994).

    Article  CAS  Google Scholar 

  51. Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S. & Kakizuka, A. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    Article  CAS  Google Scholar 

  52. Pulst, S.-M., Nechiporuk, A. & Starkman, S. Anticipation in spinocerebellar ataxia type 2. Nature Genet. 5, 8–10 (1993).

    Article  CAS  Google Scholar 

  53. Eichler, E.E. et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genet. 8, 88–94 (1994).

    Article  CAS  Google Scholar 

  54. Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861 (1994).

    Article  CAS  Google Scholar 

  55. Matsufuji, S. et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51–60 (1995).

    Article  CAS  Google Scholar 

  56. Gesteland, R.F., Weiss, R.B. & Atkins, J.F. Receding: reprogrammed genetic decoding. Science 257, 1640–1641 (1992).

    Article  CAS  Google Scholar 

  57. Pulst, S.M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269–276 (1996).

    Article  CAS  Google Scholar 

  58. Sampei, K. et al. Identification of the gene for spinocerebellar ataxia type 2, SCA2, using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996).

    Article  Google Scholar 

  59. Ashley, C.T. et al. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG repeat. Nature Genet. 4, 244–251 (1993).

    Article  CAS  Google Scholar 

  60. Broholm, J. et al. Guidelines for the molecular genetics predictive test in Huntington's disease. Neurology 44, 1533–1536 (1994).

    Article  Google Scholar 

  61. Bouillet, P. et al. Efficient cloning of cDNAs of retinoic acid-responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stra1 (mouse LERK-2/Eplg2). Dev. Biol. 170, 420–433 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbert, G., Saudou, F., Yvert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14, 285–291 (1996). https://doi.org/10.1038/ng1196-285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing