Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA

Abstract

Characterization of the basic transcription machinery of mammalian mitochondrial DNA (mtDNA)1,2 is of fundamental biological interest and may also lead to therapeutic interventions for human diseases associated with mitochondrial dysfunction3,4,5,6. Here we report that mitochondrial transcription factors B1 (TFB1M) and B2 (TFB2M) are necessary for basal transcription of mammalian mitochondrial DNA (mtDNA). Human TFB1M and TFB2M are expressed ubiquitously and can each support promoter-specific mtDNA transcription in a pure recombinant in vitro system containing mitochondrial RNA polymerase (POLRMT)7 and mitochondrial transcription factor A8,9. Both TFB1M and TFB2M interact directly with POLRMT, but TFB2M is at least one order of magnitude more active in promoting transcription than TFB1M. Both factors are highly homologous to bacterial rRNA dimethyltransferases, which suggests that an RNA-modifying enzyme has been recruited during evolution to function as a mitochondrial transcription factor. The presence of two proteins that interact with mammalian POLRMT may allow flexible regulation of mtDNA gene expression in response to the complex physiological demands of mammalian metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of the predicted amino acid sequences of TFBM homologs.
Figure 2: Subcellular localization of TFB1M and TFB2M proteins and expression of the TFB1M and TFB2M genes.
Figure 3: Characterization of mitochondrial in vitro transcription.
Figure 4: Effects of TFB2M on mitochondrial in vitro transcription.
Figure 5: Immunodepletion of TFB2M abolishes transcription in mitochondrial extracts.
Figure 6: Effects of different amounts of TFAM on transcription from HSP and LSP.

Similar content being viewed by others

References

  1. Clayton, D.A. Transcription of the mammalian mitochondrial genome. Annu. Rev. Biochem. 53, 573–594 (1984).

    Article  CAS  Google Scholar 

  2. Clayton, D.A. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7, 453–478 (1991).

    Article  CAS  Google Scholar 

  3. Larsson, N. & Clayton, D. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178 (1995).

    Article  CAS  Google Scholar 

  4. Smeitink, J., van Den Heuvel, L. & DiMauro, S. The genetics and pathology of oxidative phosphorylation. Nature Rev. Genet. 2, 342–352 (2001).

    Article  CAS  Google Scholar 

  5. Larsson, N.G. & Luft, R. Revolution in mitochondrial medicine. FEBS Lett. 455, 199–202 (1999).

    Article  CAS  Google Scholar 

  6. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  7. Tiranti, V. et al. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum. Mol. Genet. 6, 615–625 (1997).

    Article  CAS  Google Scholar 

  8. Fisher, R.P. & Clayton, D.A. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro. J. Biol. Chem. 260, 11330–11338 (1985).

    CAS  PubMed  Google Scholar 

  9. Parisi, M.A. & Clayton, D.A. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252, 965–969 (1991).

    Article  CAS  Google Scholar 

  10. Masters, B.S., Stohl, L.L. & Clayton, D.A. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51, 89–99 (1987).

    Article  CAS  Google Scholar 

  11. Schinkel, A.H., Koerkamp, M.J.A.G., Touw, E.P.W. & Tabak, H.F. Specificity factor of yeast mitochondrial RNA polymerase. Purification and interaction with core RNA polymerase. J. Biol. Chem. 262, 12785–12791 (1987).

    CAS  PubMed  Google Scholar 

  12. Parisi, M.A., Xu, B. & Clayton, D.A. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13, 1951–1961 (1993).

    Article  CAS  Google Scholar 

  13. Fisher, R.P. & Clayton, D.A. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8, 3496–3509 (1988).

    Article  CAS  Google Scholar 

  14. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  15. Bibb, M.J., VanEtten, R.A., Wright, C.T., Walberg, M.W. & Clayton, D.A. Sequence and organization of mouse mitochondrial DNA. Cell 26, 167–180 (1981).

    Article  CAS  Google Scholar 

  16. Montoya, J., Ojala, D. & Attardi, G. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290, 465–470 (1981).

    Article  CAS  Google Scholar 

  17. Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 (1981).

    Article  CAS  Google Scholar 

  18. Larsson, N.G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998).

    Article  CAS  Google Scholar 

  19. Dairaghi, D.J., Shadel, G.S. & Clayton, D.A. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28 (1995).

    Article  CAS  Google Scholar 

  20. Antoshechkin, I. & Bogenhagen, D.F. Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA. Mol. Cell. Biol. 15, 7032–7042 (1995).

    Article  CAS  Google Scholar 

  21. Bogenhagen, D.F. Interaction of mtTFB and mtRNA polymerase at core promoters for transcription of Xenopus laevis mtDNA. J. Biol. Chem. 271, 12036–12041 (1996).

    CAS  PubMed  Google Scholar 

  22. Sanyal, A. & Getz, G.S. Import of transcription factor MTF1 into the yeast mitochondria takes place through an unusual pathway. J. Biol. Chem. 270, 11970–11976 (1995).

    Article  CAS  Google Scholar 

  23. Yano, M. et al. Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J. Biol. Chem. 272, 8459–8465 (1997).

    Article  CAS  Google Scholar 

  24. Larsson, N.G., Garman, J.D., Oldfors, A., Barsh, G.S. & Clayton, D.A. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat. Genet. 13, 296–302 (1996).

    Article  CAS  Google Scholar 

  25. Larsson, N.-G., Oldfors, A., Garman, J.D., Barsh, G.S. & Clayton, D.A. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum. Mol. Genet. 6, 185–191 (1997).

    Article  CAS  Google Scholar 

  26. Schubot, F.D. et al. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Protein Sci. 10, 1980–1988 (2001).

    Article  CAS  Google Scholar 

  27. McCulloch, V., Seidel-Rogol, B.L. & Shadel, G.S. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol. Cell. Biol. 22, 1116–1125 (2002).

    Article  CAS  Google Scholar 

  28. Carrodeguas, J.A., Theis, K., Bogenhagen, D.F. & Kisker, C. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase γ, Pol γ B, functions as a homodimer. Mol. Cell 7, 43–54 (2001).

    Article  CAS  Google Scholar 

  29. Fernandez-Silva, P., Micol, V. & Attardi, G. Mitochondrial DNA transcription initiation and termination using mitochondrial lysates from cultured human cells. Methods Enzymol. 264, 129–139 (1996).

    Article  CAS  Google Scholar 

  30. Li, Y. et al. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl Acad. Sci. USA 92, 10864–10868 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Wibom and E. Holme for the kind gift of mitochondrial extracts. M.F. is supported by a postdoctoral fellowship from the Karolinska Institutet. N.G.L. is supported by grants from the Swedish Research Council, Funds of Karolinska Institutet, Torsten and Ragnar Söderbergs stiftelse, Human Frontiers Science Program, the Swedish Heart and Lung Foundation and the Swedish Foundation for Strategic Research (Functional Genomics and INGVAR). C.M.G. is supported by grants from the Swedish Cancer Society, the Swedish Research Council, Human Frontiers Science Program, the Swedish Foundation for Strategic Research (INGVAR), the Swedish Society for Medical Research, the Ake Wiberg Foundation, and the Magn. Bergwall Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nils-Göran Larsson or Claes M. Gustafsson.

Ethics declarations

Competing interests

Two of the authors (N.-G.L. and C.G.) own stock in a startup biotech company, MitoTech AB, that holds patent rights to medical applications of TFB1M and TFB2M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkenberg, M., Gaspari, M., Rantanen, A. et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31, 289–294 (2002). https://doi.org/10.1038/ng909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing