Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation

Abstract

Astrocytes have complex roles in health and disease, thus it is important to study the pathways that regulate their function. Here we report that lactosylceramide (LacCer) synthesized by β-1,4-galactosyltransferase 6 (B4GALT6) is upregulated in the central nervous system (CNS) of mice during chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). LacCer acts in an autocrine manner to control astrocyte transcriptional programs that promote neurodegeneration. In addition, LacCer in astrocytes controls the recruitment and activation of microglia and CNS-infiltrating monocytes in a non–cell autonomous manner by regulating production of the chemokine CCL2 and granulocyte-macrophage colony–stimulating factor (GM-CSF), respectively. We also detected high B4GALT6 gene expression and LacCer concentrations in CNS MS lesions. Inhibition of LacCer synthesis in mice suppressed local CNS innate immunity and neurodegeneration in EAE and interfered with the activation of human astrocytes in vitro. Thus, B4GALT6 regulates astrocyte activation and is a potential therapeutic target for MS and other neuroinflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B4GALT6 activity in astrocytes controls CNS inflammation and neurodegeneration.
Figure 2: B4GALT6 inhibition suppresses astrocyte activation during EAE.
Figure 3: LacCer produced by B4GALT6 acts in an autocrine manner to boost astrocyte activation.
Figure 4: B4GALT6 regulates Ccl2 transcriptional activity in astrocytes.
Figure 5: B4GALT6 in astrocytes regulates the activation of microglia and CNS-infiltrating monocytes.
Figure 6: B4GALT5, B4GALT6 and LacCer are upregulated in MS lesions.

Similar content being viewed by others

References

  1. Clarke, L.E. & Barres, B.A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. & Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Seifert, G., Schilling, K. & Steinhauser, C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Tsai, H.H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bush, T.G. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Myer, D.J., Gurkoff, G.G., Lee, S.M., Hovda, D.A. & Sofroniew, M.V. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129, 2761–2772 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Toft-Hansen, H., Fuchtbauer, L. & Owens, T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia 59, 166–176 (2011).

    Article  PubMed  Google Scholar 

  8. Voskuhl, R.R. et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 29, 11511–11522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mayo, L., Quintana, F.J. & Weiner, H.L. The innate immune system in demyelinating disease. Immunol. Rev. 248, 170–187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nylander, A. & Hafler, D.A. Multiple sclerosis. J. Clin. Invest. 122, 1180–1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weiner, H.L. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann. Neurol. 65, 239–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Joseph, J., Bittner, S., Kaiser, F.M., Wiendl, H. & Kissler, S. IL-17 silencing does not protect nonobese diabetic mice from autoimmune diabetes. J. Immunol. 188, 216–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Basso, A.S. et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J. Clin. Invest. 118, 1532–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farez, M.F. et al. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10, 958–964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, W. et al. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 35, 273–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Chatterjee, S. & Alsaeedi, N. Lactosylceramide synthase as a therapeutic target to mitigate multiple human diseases in animal models. Adv. Exp. Med. Biol. 749, 153–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Pannu, R., Won, J.S., Khan, M., Singh, A.K. & Singh, I. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases. J. Neurosci. 24, 5942–5954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Izikson, L., Klein, R.S., Charo, I.F., Weiner, H.L. & Luster, A.D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075–1080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132, 2487–2500 (2009).

    Article  PubMed  Google Scholar 

  22. Watkins, T.A., Emery, B., Mulinyawe, S. & Barres, B.A. Distinct stages of myelination regulated by γ-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishie, T. β4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20, 1311–1322 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Tokuda, N. et al. β4GalT6 is involved in the synthesis of lactosylceramide with less intensity than β4GalT5. Glycobiology 23, 1175–1183 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, Y. et al. CNS-specific therapy for ongoing EAE by silencing IL-17 pathway in astrocytes. Mol. Ther. 20, 1338–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, J.K. et al. Lactosylceramide mediates the expression of adhesion molecules in TNF-α and IFNγ-stimulated primary cultured astrocytes. Korean J. Physiol. Pharmacol. 15, 251–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, D.R., Wang, J., Kivisakk, P., Rollins, B.J. & Ransohoff, R.M. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med. 193, 713–726 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Murray, P.J. & Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ponomarev, E.D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178, 39–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Gong, N., Wei, H., Chowdhury, S.H. & Chatterjee, S. Lactosylceramide recruits PKCα/ɛ and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and adhesion to endothelial cells. Proc. Natl. Acad. Sci. USA 101, 6490–6495 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura, H. et al. Lactosylceramide interacts with and activates cytosolic phospholipase A2α. J. Biol. Chem. 288, 23264–23272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ho, P.P. et al. Identification of naturally occurring fatty acids of the myelin sheath that resolve neuroinflammation. Sci. Transl. Med. 4, 137ra173 (2012).

    Article  CAS  Google Scholar 

  36. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanter, J.L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Quintana, F.J. et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl. Acad. Sci. USA 105, 18889–18894 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quintana, F.J., Yeste, A., Weiner, H.L. & Covacu, R. Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. J. Neuroimmunol. 248, 53–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwab, J.M., Chiang, N., Arita, M. & Serhan, C.N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Cardona, A.E., Huang, D., Sasse, M.E. & Ransohoff, R.M. Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat. Protoc. 1, 1947–1951 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prinz, M., Priller, J., Sisodia, S.S. & Ransohoff, R.M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Zamanian, J.L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ulitsky, I. et al. Expander: from expression microarrays to networks and functions. Nat. Protoc. 5, 303–322 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Saura, J., Tusell, J.M. & Serratosa, J. High-yield isolation of murine microglia by mild trypsinization. Glia 44, 183–189 (2003).

    Article  PubMed  Google Scholar 

  48. Kunis, G. et al. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain 136, 3427–3440 (2013).

    Article  PubMed  Google Scholar 

  49. Menheniott, T.R., Charalambous, M. & Ward, A. Derivation of primary choroid plexus epithelial cells from the mouse. Methods Mol. Biol. 633, 207–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Jack, C.S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330 (2005).

    Article  CAS  Google Scholar 

  51. Alvarez, J.I. et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727–1731 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Losyev and D. Kozoriz for cell sorting, F. Kirchhoff (University of Saarland) for providing us with GFAP transgenic mice and G.-X. Zhang (Thomas Jefferson University) for the pLenti-GFAP-EGFP-mir30-shAct1 vector. This work was supported by grants AI075285 and AI093903 from the US National Institutes of Health, RG4111A1 and JF2161-A-5 from the National Multiple Sclerosis Society and PA0069 from the International Progressive MS Alliance (F.J.Q.) and US National Institutes Transformative Grant AG-043975 (H.W.L.); L.M. is supported by a postdoctoral fellowship (FG1941A1/2) from National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Contributions

L.M., M.N., P.K., A.Y., K.K. and I.D.M. performed in vitro and in vivo experiments with murine systems; S.A.T. measured lipids; J.I.A., B.E. and A.P. provided unique MS samples; J.I.A. and L.M. performed in vitro experiments with human samples; L.M., M.B. and J.P.A. performed experiments with human astrocytes in culture; L.M. and B.P. performed bioinformatics analysis; R.B. contributed to the initial experimental design; L.M., A.P., J.P.A., H.L.W. and F.J.Q. analyzed and interpreted data; L.M. and F.J.Q. wrote the manuscript; F.J.Q. conceived and supervised the study and edited the manuscript.

Corresponding author

Correspondence to Francisco J Quintana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 4932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayo, L., Trauger, S., Blain, M. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20, 1147–1156 (2014). https://doi.org/10.1038/nm.3681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing