Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia

Subjects

Abstract

Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca2+-permeable and Ca2+-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell–derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Age-dependent deficits in sociability in tTA:CHMP2BIntron5 mice.
Figure 2: Age-dependent changes in expression levels of different glutamate receptor subunits in the cortex of tTA:CHMP2BIntron5 mice.
Figure 3: Functional consequences of altered AMPAR composition in tTA:CHMP2BIntron5 mice.
Figure 4: miR-124 regulates AMPAR subunits in HEK293 cells, and its expression is reduced in the cortex of tTA:CHMP2BIntron5 mice.
Figure 5: miR-124 and AMPAR expression are altered in the frontal cortex of subjects with bvFTD and in cortical neurons derived from iPSC lines from three subjects with bvFTD.
Figure 6: miR-124 expression and Gria2 knockdown in the mPFC partially rescue social deficits in tTA:CHMP2BIntron5 mice.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Dickson, D.W. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. 2, a009258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldstein, L.H. & Abrahams, S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol. 12, 368–380 (2013).

    Article  PubMed  Google Scholar 

  3. Serrano-Pozo, A., Frosch, M.P., Masliah, E. & Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neary, D., Snowden, J. & Mann, D. Frontotemporal dementia. Lancet Neurol. 4, 771–780 (2005).

    Article  PubMed  Google Scholar 

  5. Loy, C.T., Schofield, P.R., Turner, A.M. & Kwok, J.B. Genetics of dementia. Lancet 383, 828–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Gendron, T.F., Belzil, V.V., Zhang, Y.J. & Petrucelli, L. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol. 127, 359–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ling, S.C., Polymenidou, M. & Cleveland, D.W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox, L.E. et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS ONE 5, e9872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Hooli, B.V. et al. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol. Psychiatry 19, 676–681 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Henne, W.M., Buchkovich, N.J. & Emr, S.D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hurley, J.H. & Hanson, P.I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belly, A. et al. CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines. J. Cell Sci. 123, 2943–2954 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Ghazi-Noori, S. et al. Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain 135, 819–832 (2012).

    Article  PubMed  Google Scholar 

  15. Lee, J.A., Beigneux, A., Ahmad, S.T., Young, S.G. & Gao, F.B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J.A. & Gao, F.B. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J. Neurosci. 29, 8506–8511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abe, M. & Bonini, N.M. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol. 23, 30–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Gascon, E. & Gao, F.B. Cause or effect: misregulation of microRNA pathways in neurodegeneration. Front. Neurosci. 6, 48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, F.B. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 5, 25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rademakers, R., Neumann, M. & Mackenzie, I.R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 8, 423–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seelaar, H., Rohrer, J.D., Pijnenburg, Y.A., Fox, N.C. & van Swieten, J.C. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J. Neurol. Neurosurg. Psychiatry 82, 476–486 (2011).

    Article  PubMed  Google Scholar 

  24. Bourne, J. & Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol. 17, 381–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. & Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Namba, T., Morimoto, K., Sato, K., Yamada, N. & Kuroda, S. Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy. Brain Res. 638, 36–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rozov, A., Sprengel, R. & Seeburg, P.H. GluA2-lacking AMPA receptors in hippocampal CA1 cell synapses: evidence from gene-targeted mice. Front. Mol. Neurosci. 5, 22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, S.J. & Zukin, R.S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Noh, K.M. et al. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc. Natl. Acad. Sci. USA 102, 12230–12235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Siegel, G., Saba, R. & Schratt, G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr. Opin. Genet. Dev. 21, 491–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Deo, M., Yu, J.Y., Chung, K.H., Tippens, M. & Turner, D.L. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev. Dyn. 235, 2538–2548 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Almeida, S. et al. Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Reports 2, 789–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Almeida, S. et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 126, 385–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen-Plotkin, A.S. et al. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J. Neurosci. 32, 11213–11227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hébert, S.S., Wang, W.X., Zhu, Q. & Nelson, P.T. A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer's disease, dementia with Lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. J. Alzheimers Dis. 35, 335–348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen-Plotkin, A.S. et al. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum. Mol. Genet. 17, 1349–1362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Swieten, J.C. & Heutink, P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 7, 965–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Piguet, O., Hornberger, M., Mioshi, E. & Hodges, J.R. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 10, 162–172 (2011).

    Article  PubMed  Google Scholar 

  44. Filiano, A.J. et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J. Neurosci. 33, 5352–5361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, E.J. et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb. Cortex 22, 251–259 (2012).

    Article  PubMed  Google Scholar 

  46. Adamczyk, A. et al. GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav. Brain Res. 229, 265–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bezprozvanny, I. & Hiesinger, P.R. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration. Mol. Neurodegener. 8, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gibbings, D.J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, Y.S. et al. Silencing by small RNAs is linked to endosomal trafficking. Nat. Cell Biol. 11, 1150–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dutta, R. et al. Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann. Neurol. 73, 637–645 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Prudencio, M. et al. Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proc. Natl. Acad. Sci. USA 109, 21510–21515 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Winslow, J.T. Mouse social recognition and preference. Curr. Protoc. Neurosci. 22, 8.16 (2003).

    Article  Google Scholar 

  53. Witt, R.M., Galligan, M.M., Despinoy, J.R. & Segal, R. Olfactory behavioral testing in the adult mouse. J. Vis. Exp. 23, 949 (2009).

    Google Scholar 

  54. Leger, M. et al. Object recognition test in mice. Nat. Protoc. 8, 2531–2537 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mueller, C., Ratner, D., Zhong, L., Esteves-Sena, M. & Gao, G. Production and discovery of novel recombinant adeno-associated viral vectors. Curr. Protoc. Microbiol. 26, 14D.1 (2012).

    Google Scholar 

  57. Chang, K., Elledge, S.J. & Hannon, G.J. Lessons from Nature: microRNA-based shRNA libraries. Nat. Methods 3, 707–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Gao, G.P. & Sena-Esteves, M. Introducing genes into mammalian cells: viral vectors. in Molecular Cloning, Vol 2: A Laboratory Manual (eds. Green, M.R. and Sambrook, J.) 1209–1313 (Cold Spring Harbor Laboratory Press, New York, 2012).

  59. Kutner, R.H., Zhang, X.Y. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 495–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Paxinos, G. & Franklin, B.J. Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates. 4th edn. (Elsevier Science, San Diego, 2012).

  61. Gascon, E. et al. Hepatocyte growth factor-Met signaling is required for Runx1 extinction and peptidergic differentiation in primary nociceptive neurons. J. Neurosci. 30, 12414–12423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gascon, E., Vutskits, L., Jenny, B., Durbec, P. & Kiss, J.Z. PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134, 1181–1190 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Ordway and Gao lab members for comments, Y. Li and A. Philbrook for help with some experiments, A. Tapper for sharing behavioral test equipment, the Digital Light Microscopy Core at the University of Massachusetts Medical School (UMMS) for assistance with Golgi staining, the UMMS Viral Vector core for help with AAV vectors, and the University of California–San Francisco Neurodegenerative Disease Brain Bank for some human brain tissues. We also thank R. Rademakers for genotyping some human samples in a previous work51 that we used in the current study and A. Chen-Plotkin for sharing published array data38,40. This work was supported by a UMMS startup fund (F.-B.G.), The Consortium for Frontotemporal Dementia Research (W.W.S.) and the US National Institutes of Health (NS057553, NS066586 and NS079725 to F.-B.G.; DA032283 to W.-D.Y.; MH086509 to S.A.; AG023501 and AG19724 to W.W.S.; and AG016574 to D.W.D. and L.P.).

Author information

Authors and Affiliations

Authors

Contributions

E.G., K.L., S.A. and H.Z. performed most experiments. H.R. and W.-D.Y. carried out the electrophysiology analysis and wrote the relevant sections. J.M.V., D.S. and J.J. generated the transgenic mouse lines. L.P., D.W.D. and W.W.S. provided brain tissues from control subjects and subjects with FTD. M.J. and S.A. assisted with behavioral tests. E.G. and F.-B.G. analyzed the data and wrote the manuscript. F.-B.G. conceived and supervised the project.

Corresponding author

Correspondence to Fen-Biao Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1 and 2. (PDF 5607 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gascon, E., Lynch, K., Ruan, H. et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 20, 1444–1451 (2014). https://doi.org/10.1038/nm.3717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing