Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Activation of transposable elements during aging and neuronal decline in Drosophila

Abstract

We found that several transposable elements were highly active in Drosophila brain during normal aging. In addition, we found that mutations in Drosophila Argonaute 2 (Ago2) resulted in exacerbated transposon expression in the brain, progressive and age-dependent memory impairment, and shortened lifespan. These findings suggest that transposon activation may contribute to age-dependent loss of neuronal function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Age-dependent increases in expression of LINE-like and LTR retrotransposons in Drosophila brain.
Figure 2: gypsy-TRAP reporter detects de novo integration in neurons in aged flies.
Figure 3: Age-dependent transposable element expression contributes to memory decline and age-dependent mortality.

Similar content being viewed by others

References

  1. Belancio, V.P., Hedges, D.J. & Deininger, P. Genome Res. 18, 343–358 (2008).

    Article  CAS  Google Scholar 

  2. Goodier, J.L. & Kazazian, H.H. Jr. Cell 135, 23–35 (2008).

    Article  CAS  Google Scholar 

  3. Muotri, A.R. et al. Nature 435, 903–910 (2005).

    Article  CAS  Google Scholar 

  4. Coufal, N.G. et al. Nature 460, 1127–1131 (2009).

    Article  CAS  Google Scholar 

  5. Baillie, J.K. et al. Nature 479, 534–537 (2011).

    Article  CAS  Google Scholar 

  6. Lathe, R. & Harris, A. J. Mol. Biol. 392, 813–822 (2009).

    Article  CAS  Google Scholar 

  7. Muotri, A.R. et al. Nature 468, 443–446 (2010).

    Article  CAS  Google Scholar 

  8. Jeong, B.H., Lee, Y.J., Carp, R.I. & Kim, Y.S. J. Clin. Virol. 47, 136–142 (2010).

    Article  CAS  Google Scholar 

  9. Coufal, N.G. et al. Proc. Natl. Acad. Sci. USA 108, 20382–20387 (2011).

    Article  CAS  Google Scholar 

  10. Douville, R., Liu, J., Rothstein, J. & Nath, A. Ann. Neurol. 69, 141–151 (2011).

    Article  CAS  Google Scholar 

  11. Kaneko, H. et al. Nature 471, 325–330 (2011).

    Article  CAS  Google Scholar 

  12. Tan, H. et al. Hum. Mol. Genet. 21, 57–65 (2012).

    Article  Google Scholar 

  13. Li, W., Jin, Y., Prazak, L., Hammell, M. & Dubnau, J. PLoS ONE 7, e44099 (2012).

    Article  CAS  Google Scholar 

  14. Czech, B. & Hannon, G.J. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  Google Scholar 

  15. Labrador, M., Sha, K., Li, A. & Corces, V.G. Genetics 180, 1367–1378 (2008).

    Article  CAS  Google Scholar 

  16. Schwaerzel, M., Heisenberg, M. & Zars, T. Neuron 35, 951–960 (2002).

    Article  CAS  Google Scholar 

  17. Dubnau, J. & Chiang, A.S. Curr. Opin. Neurobiol. 23, 84–91 (2013).

    Article  CAS  Google Scholar 

  18. Lim, D.H. et al. FEBS Lett. 585, 3079–3085 (2011).

    Article  CAS  Google Scholar 

  19. Liu, N. et al. Nature 482, 519–523 (2012).

    Article  CAS  Google Scholar 

  20. Chen, Y., Pane, A. & Schupbach, T. Curr. Biol. 17, 637–642 (2007).

    Article  CAS  Google Scholar 

  21. Tully, T., Preat, T., Boynton, S.C. & Del Vecchio, M. Cell 79, 35–47 (1994).

    Article  CAS  Google Scholar 

  22. Qin, H. et al. Curr. Biol. 22, 608–614 (2012).

    Article  CAS  Google Scholar 

  23. Chen, G. et al. PLoS Comput. Biol. 4, e1000026 (2008).

    Article  Google Scholar 

  24. Song, S.U., Gerasimova, T., Kurkulos, M., Boeke, J.D. & Corces, V.G. Genes Dev. 8, 2046–2057 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Czech and G. Hannon (Cold Spring Harbor Laboratory) for the Ago2414 and loki RNAi fly lines, F.-B. Gao (University of Massachusetts Medical School) for the Ago251B fly line, B. Dickson (Institute of Molecular Pathology) for the UASAgo2 transgenic fly line, M. Welte (University of Rochester) for the Ago2454 fly line, T. Lee (Janelia Farm Research Campus) for the pTub-GAL80 in Casper4 plasmid, J. Boek (Johns Hopkins University School of Medicine) for the 7B3 hybridoma cell line, and C. Bautista at the Cold Spring Harbor Laboratory shared resources for ascites production. We thank T. Russel for technical assistance in construction of the gypsy reporter system. We also are grateful to S. Waddell, J. Beshel, M. Cressy, B. Czech, G. Hannon, K. Honegger, J. Huang, M. Kernan, R. Martienssen, H. Qin, C. Sandoval, Y. Shuai, G. Turner, T. Zador and Y. Zhong for helpful discussions or comments on the manuscript. This work was supported by US National Institutes of Health grant TR01(5R01NS067690-03) and DART NeuroScience LLC awarded to J.D. S.G. received additional support from the Shakespeare Fellowship and the Ernst Göhner Foundation.

Author information

Authors and Affiliations

Authors

Contributions

W.L., L.P. and J.D. conceived and designed the project and analyzed the experiments. W.L. performed the behavior experiments and western blots. The QPCR and lifespan analyses were performed by L.P. with assistance from W.L., L.K. and D.T. L.P., N.C. and S.G. did the imaging. W.L., L.P. and J.D. wrote the manuscript with comments from the other authors.

Corresponding author

Correspondence to Josh Dubnau.

Ethics declarations

Competing interests

This work was funded in part by DART NeuroScience LLC via a research grant to J.D.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 9582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Prazak, L., Chatterjee, N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16, 529–531 (2013). https://doi.org/10.1038/nn.3368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing