Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading

Abstract

Copper-mediated oxidative damage is proposed to play a critical role in the pathogenesis of Cu/Zn superoxide dismutase (SOD1)–linked familial amyotrophic lateral sclerosis (FALS). We tested this hypothesis by ablating the gene encoding the copper chaperone for SOD1 (CCS) in a series of FALS-linked SOD1 mutant mice. Metabolic 64Cu labeling in SOD1-mutant mice lacking the CCS showed that the incorporation of copper into mutant SOD1 was significantly diminished in the absence of CCS. Motor neurons in CCS−/− mice showed increased rate of death after facial nerve axotomy, a response documented for SOD1−/− mice. Thus, CCS is necessary for the efficient incorporation of copper into SOD1 in motor neurons. Although the absence of CCS led to a significant reduction in the amount of copper-loaded mutant SOD1, however, it did not modify the onset and progression of motor neuron disease in SOD1-mutant mice. Hence, CCS-dependent copper loading of mutant SOD1 plays no role in the pathogenesis of motor neuron disease in these mouse models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SOD1 protein levels are not affected by the absence of CCS.
Figure 2: Reduced SOD1 activity in mutant SOD1 expressing mice lacking CCS.
Figure 3: Diminished 64Cu incorporation into the mutant SOD1 protein in the absence of CCS.
Figure 4: Increased axotomy-induced death- of motor neurons of facial nuclei in CCS−/− mice.
Figure 5: Absence of CCS does not affect the onset of motor neuron disease or lifespan in G37R, G93A and G85R mutant mice.
Figure 6: Absence of CCS does not alter neuropathological abnormalities in end-stage G37R and G93A mutant SOD1 mice.

Similar content being viewed by others

References

  1. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Deng, H. X. et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Wong, P. C. et al. An adverse property of a familial ALS–linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H. & Gordon, J. W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. 92, 689–693 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Julien, J.-P. Amyotrophic lateral sclerosis. Unfolding the toxicity of the misfolded. Cell 104, 581–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Estevez, A. G. et al. Induction of nitric oxide–dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–2500 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. ALS, SOD and peroxynitrite. Nature 364, 584 (1993).

  12. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O'Halloran, T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kuo, Y. M., Zhou, B., Cosco, D. & Gitschier, J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 98, 6836–6841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, J., Prohaska, J. R. & Thiele, D. J. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci. USA 98, 6842–6847 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Culotta, V. C. et al. Intracellular pathways of copper trafficking in yeast and humans. Adv. Exp. Med. Biol. 448, 247–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Culotta, V. C. et al. The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469–23472 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Torres, A. S., Petri, V., Rae, T. D. & O'Halloran, T. V. Copper-stabilized heterodimer of the yCCS metallochaperone and its target superoxide dismutase. J. Biol. Chem. 276, 38410–38416 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 97, 2886–2891 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crapo, J., McCord, J. M. & Fridovich, I. Preparation and assay of superoxide dismutases. Methods Enzymol. 53, 382–393 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase–deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genetics 13, 43–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Mouton, P. R. et al. Cognitive decline strongly correlates with cortical atrophy in Alzheimer's dementia. Neurobiol. Aging 19, 371–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lyons, W. E. et al. Neuronal regeneration enhances the expression of the immunophilin FKBP-12. J. Neurosci. 15, 2985–2994 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williamson, T. L. et al. Toxicity of ALS-linked SOD1 mutants. Science 288, 399 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Borchelt, D. R. et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8292–8296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corson, L. B, Strain, J. J., Culotta, V. C. & Cleveland, D. W. Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis–linked superoxide dismutase mutants. Proc. Natl. Acad. Sci. USA 95, 6361–6366 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crow, J. P. et al. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 69, 1945–1953 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Doroudchi, M. M., Minotti, S., Figlewicz, D. A. & Durham, H. D. Nitrotyrosination contributes minimally to toxicity of mutant SOD1 associated with ALS. Neuroreport 12, 1239–1243 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Facchinetti, F. et al. Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 90, 1483–1492 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Yim, M. B. et al. A gain-of-function of an amyotrophic lateral sclerosis–associated Cu,Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. USA 93, 5709–5714 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yim, H. S. et al. A familial amyotrophic lateral sclerosis–associated A4V Cu,Zn-superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J. Biol. Chem. 272, 8861–8863 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Singh, R. J. et al. Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis–associated Cu,Zn superoxide dismutase mutants and H2O2 . Proc. Natl. Acad. Sci. USA 95, 6675–6680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sankarapandi, S. & Zweier, J. L. Evidence against the generation of free hydroxyl radicals from the interaction of copper, zinc-superoxide dismutase and hydrogen peroxide. J. Biol. Chem. 274, 34576–34583 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Goto, J. J. et al. Loss of in vitro metal ion binding specificity in mutant copper–zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 275, 1007–1014 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, H. et al. Copper2+ binding to the surface residue cysteine 111 of His46Arg human copper–zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry 39, 8125–8132 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Martin, L. J. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Pasinelli, P., Houseweart, M. K., Brown, R. H. Jr. & Cleveland, D. W. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase–mediated familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 13901–13906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Johnston, J. A, Dalton, M. J., Gurney, M. E. & Kopito, R. R. Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 12571–12576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beaulieu, J. M., Jacomy, H. & Julien, J. P. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J. Neurosci. 20, 5321–5328 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sunderman, F. W. Jr. & Nomoto, S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem. 11, 903–910 (1970).

    Google Scholar 

  42. Prohaska, J. R & Bailey, W. R. Persistent regional changes in brain copper, cuproenzymes and catecholamines following perinatal copper deficiency in mice. J. Nutr. 123, 1226–1234 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Cristostomo for support in histology, E. Corpus for mouse maintenance, L. Jensen for assistance in copper content determination, T. O'Halloran for apoSOD1 and D. Borchelt and V. Culotta for discussions. This work has been supported by grants from the National Institute of Health (P.C.W., D.L.P., D.W.C. and J.D.G.), Amyotrophic Lateral Sclerosis Association (P.C.W.) and The Spinal Cord Research Foundation (J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramaniam, J., Lyons, W., Liu, J. et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading. Nat Neurosci 5, 301–307 (2002). https://doi.org/10.1038/nn823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn823

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing