Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design of gene circuits: lessons from bacteria

Key Points

  • A wealth of knowledge about genetic regulatory circuits motivates us to identify clear patterns in the design of gene circuits and to search for design principles that can explain their natural diversity.

  • Here, we review design principles for the regulation of transcription-factor (TF) expression in elementary gene circuits in bacteria. The design principles resulted from theoretical studies to determine the functional consequences of alternative designs using mathematically controlled comparisons.

  • Negative autoregulation is expected for TFs in systems for which stability, robustness and responsiveness are important.

  • Whether TF expression is expected to increase or decrease in response to an increase in signal depends on several other properties of the gene circuit: whether effector gene expression increases or decreases in response to an increase in signal; whether the TF exerts an activator or repressor mode of control on effector gene expression; and whether the magnitude of the steady-state gain of effector gene expression with signal is high, intermediate or low. The expected change of TF expression in response to signal (increase or decrease) results from considering the most responsive system given constraints that arise when the gain is sufficiently high.

  • To illustrate how the design principles provide a framework for understanding and organizing a large body of data, we assemble and examine a database that incorporates information about 50 TFs in Escherichia coli, resulting in a number of predictions and observations.

  • New experimental methods will enable studies of increasingly complicated gene circuits, which might show even richer patterns of gene-circuit design. Discovery of design principles for gene circuits in all cell types will require not only theoretical and experimental studies of natural systems, but also rigorous analysis of the functional consequences of alternative designs.

Abstract

Researchers are now building synthetic circuits for controlling gene expression and considering practical applications for engineered gene circuits. What can we learn from nature about design principles for gene circuits? A large body of experimental data is now available to test some important theoretical predictions about how gene circuits could be organized, but the data also raise some intriguing new questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of control by a transcription factor in an elementary gene circuit.
Figure 2: Transcriptional regulatory interactions in a gene circuit with a global and a local transcription factor.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  2. Jacob, F. & Monod, J. On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol. 26, 193–211 (1961).

    CAS  Google Scholar 

  3. Reznikoff, W. S. The operon revisited. Annu. Rev. Genet. 6, 133–156 (1972).

    CAS  PubMed  Google Scholar 

  4. Neidhardt, F. C. & Savageau, M. A. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1310–1324 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  5. Englesberg, E., Irr, J., Power, J. & Lee, N. Positive control of enzyme synthesis by gene C in the L-arabinose system. J. Bacteriol. 90, 946–957 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Khodursky, A. B. et al. DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 12170–12175 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin, R. G. & Rosner, J. L. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol. Microbiol. 44, 1611–1624 (2002).

    CAS  PubMed  Google Scholar 

  8. Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292, 2080–1083 (2001).

    CAS  PubMed  Google Scholar 

  9. Ronen, M., Rosenberg, R., Shraiman, B. I. & Alon, U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl Acad. Sci. USA 99, 10555–10560 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    CAS  PubMed  Google Scholar 

  12. Gardner, T. S., di Bernardo, D., Lorenz, D. & Collins, J. J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    CAS  PubMed  Google Scholar 

  13. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002). Reports the discovery that certain kinds of patterns of mutual connections among genes, termed network motifs, occur more often than would be expected at random in the transcriptional regulatory network of E. coli . Also reports that regulatory connections are relatively shallow, emphasizing the importance of elementary gene circuits in E. coli.

    CAS  PubMed  Google Scholar 

  14. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  15. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).

    CAS  PubMed  Google Scholar 

  16. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  17. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    CAS  PubMed  Google Scholar 

  18. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    CAS  PubMed  Google Scholar 

  20. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ronchel, M. C. & Ramos, J. L. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67, 2649–2656 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnol. 18, 533–537 (2000).

    CAS  Google Scholar 

  23. Ramachandra, M. et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nature Biotechnol. 19, 1035–1041 (2001).

    CAS  Google Scholar 

  24. Hlavacek, W. S. & Savageau, M. A. Subunit structure of regulator proteins influences the design of gene circuitry: analysis of perfectly coupled and completely uncoupled circuits. J. Mol. Biol. 248, 739–755 (1995).

    CAS  PubMed  Google Scholar 

  25. Hlavacek, W. S. & Savageau, M. A. Rules for coupled expression of regulator and effector genes in inducible circuits. J. Mol. Biol. 255, 121–139 (1996). Reports the definitive relevant theoretical study of elementary inducible gene circuits in bacteria.

    CAS  PubMed  Google Scholar 

  26. Hlavacek, W. S. & Savageau, M. A. Completely uncoupled and perfectly coupled gene expression in repressible systems. J. Mol. Biol. 266, 538–558 (1997).

    CAS  PubMed  Google Scholar 

  27. Hlavacek, W. S. & Savageau, M. A. Method for determining natural design principles of biological control circuits. J. Intell. Fuzzy Syst. 6, 147–160 (1998).

    Google Scholar 

  28. Wall, M. E., Hlavacek, W. S. & Savageau, M. A. Design principles for regulator gene expression in a repressible gene circuit. J. Mol. Biol. 332, 861–876 (2003). Reports the definitive relevant theoretical study of elementary repressible gene circuits in bacteria.

    CAS  PubMed  Google Scholar 

  29. Savageau, M. A. Genetic regulatory mechanisms and the ecological niche of Escherichia coli. Proc. Natl Acad. Sci. USA 71, 2453–2455 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Savageau, M. A. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology (Addison-Wesley, Reading, Massachusetts, 1976). The definitive source of information about mathematically controlled comparisons. Addresses numerous questions of biochemical system design, including the mode of self-regulation in inducible catabolic and repressible biosynthetic gene circuits, and the position of the natural inducer in an inducible catabolic gene circuit.

    Google Scholar 

  31. Beckwith, J. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1444–1452 (American Society for Microbiology, Washington DC, 1987).

    Google Scholar 

  32. Klig, L. S., Carey, J. & Yanofsky, C. trp repressor interactions with the trp, aroH and trpR operators. Comparison of repressor binding in vitro and repression in vivo. J. Mol. Biol. 202, 769–777 (1988).

    CAS  PubMed  Google Scholar 

  33. Somerville, R. The Trp repressor, a ligand-activated regulatory protein. Prog. Nucleic Acid Res. Mol. Biol. 42, 1–38 (1992).

    CAS  PubMed  Google Scholar 

  34. Savageau, M. A. A theory of alternative designs for biochemical control systems. Biomed. Biochim. Acta 44, 875–880 (1985).

    CAS  PubMed  Google Scholar 

  35. Alves, R. & Savageau, M. A. Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16, 786–798 (2000).

    CAS  PubMed  Google Scholar 

  36. Elf, J., Berg, O. G. & Ehrenberg, M. Comparison of repressor and transcriptional attenuator systems for control of amino acid biosynthetic operons. J. Mol. Biol. 313, 941–954 (2001).

    CAS  PubMed  Google Scholar 

  37. Heincz, M. C. & McFall, E. Role of small molecules in regulation of D-serine deaminase synthesis. J. Bacteriol. 136, 104–110 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McFall, E. & Heincz, M. C. Identification and control of synthesis of the dsdC activator protein. J. Bacteriol. 153, 872–877 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nørregaard-Madsen, M., McFall, E. & Valentin-Hansen, P. Organization and transcriptional regulation of the Escherichia coli K-12 D-serine tolerance locus. J. Bacteriol. 177, 6456–6461 (1995).

    PubMed  PubMed Central  Google Scholar 

  40. Sung, Y. C. & Fuchs, J. A. The Escherichia coli K-12 cyn operon is positively regulated by a member of the lysR family. J. Bacteriol. 174, 3645–3650 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guilloton, M. B. et al. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli. J. Bacteriol. 175, 1443–1451 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamblin, A. F. & Fuchs, J. A. Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation. J. Bacteriol. 176, 6613–6622 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Urbanowski, M. L. & Stauffer, G. V. Regulation of the metR gene of Salmonella typhimurium. J. Bacteriol. 169, 5841–5844 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Urbanowski, M. L. & Stauffer, G. V. Role of homocysteine in metR-mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli. J. Bacteriol. 171, 3277–3281 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Camakaris, H. & Pittard, J. Autoregulation of the tyrR gene. J. Bacteriol. 150, 70–75 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pittard, A. J. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 458–484 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  47. Grunden, A. M., Ray, R. M., Rosentel, J. K., Healy, F. G. & Shanmugam, K. T. Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J. Bacteriol. 178, 735–744 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Savageau, M. A. Demand theory of gene regulation. I. Quantitative development of the theory. Genetics 149, 1665–1676 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Savageau, M. A. Design of molecular control mechanisms and the demand for gene expression. Proc. Natl Acad. Sci. USA 74, 5647–5651 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Savageau, M. A. in Theoretical Biology — Epigenetic and Evolutionary Order (ed. Saunders, P. T.) 42–66 (Edinburgh Univ. Press, Edinburgh, 1989).

    Google Scholar 

  51. Savageau, M. A. Demand theory of gene regulation. II. Quantitative application to the lactose and maltose operons of Escherichia coli. Genetics 149, 1677–1691 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Savageau, M. A. in Biological Regulation and Development Vol. 1 (ed. Hood, L. E.) 57–108 (Plenum, New York, 1979).

    Google Scholar 

  53. Savageau, M. A. Alternative designs for a genetic switch: analysis of switching times using the piecewise power-law representation. Math. Biosci. 180, 237–253 (2002).

    PubMed  Google Scholar 

  54. Savageau, M. A. Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252, 546–549 (1974).

    CAS  PubMed  Google Scholar 

  55. Savageau, M. A. Significance of autogenously regulated and constitutive synthesis of regulatory proteins in repressible biosynthetic systems. Nature 258, 208–214 (1975).

    CAS  PubMed  Google Scholar 

  56. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000). Reports an experiment that showed that fluctuations in concentrations of mRNA transcripts are decreased by introducing negative autoregulation into a synthetic elementary gene circuit in E. coli . This result is consistent with the theoretical finding that stability is increased for negative autoregulation.

    CAS  PubMed  Google Scholar 

  57. Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002). Reports an experiment that used synthetic elementary gene circuits in E. coli , showing that the response time of a negatively autoregulated circuit is smaller than the response time of a similar circuit without TF self-regulation. This result is consistent with the theoretical finding that responsiveness is increased for negative autoregulation.

    CAS  PubMed  Google Scholar 

  58. Salgado, H. et al. RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res. 29, 72–74 (2001). Describes a well-known public database of transcriptional regulatory interactions in E. coli . The database does not include information on the influence of signals.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Thieffry, D., Huerta, A. M., Pérez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20, 433–440 (1998).

    CAS  PubMed  Google Scholar 

  60. Hirakawa, H., Nishino, K., Hirata, T. & Yamaguchi, A. Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 185, 1851–1856 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin, R. G., Jair, K. W., Wolf, R. E. Jr & Rosner, J. L. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J. Bacteriol. 178, 2216–2223 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bausch, C. et al. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J. Bacteriol. 180, 3704–3710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Egan, S. M. & Schleif, R. F. A regulatory cascade in the induction of rhaBAD. J. Mol. Biol. 234, 87–98 (1993).

    CAS  PubMed  Google Scholar 

  64. Via, P., Badia, J., Baldoma, L., Obradors, N. & Aguilar, J. Transcriptional regulation of the Escherichia coli rhaT gene. Microbiology 142, 1833–1840 (1996).

    CAS  PubMed  Google Scholar 

  65. Song, S. & Park, C. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J. Bacteriol. 179, 7025–7032 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Roof, D. M. & Roth, J. R. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium. J. Bacteriol. 174, 6634–6643 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Azakami, H., Sugino, H., Yokoro, N., Iwata, N. & Murooka, Y. moaR, a gene that encodes a positive regulator of the monoamine regulon in Klebsiella aerogenes. J. Bacteriol. 175, 6287–6292 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jeter, R. M. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J. Gen. Microbiol. 136, 887–896 (1990).

    CAS  PubMed  Google Scholar 

  69. Bobik, T. A., Ailion, M. & Roth, J. R. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J. Bacteriol. 174, 2253–2266 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ailion, M., Bobik, T. A. & Roth, J. R. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. J. Bacteriol. 175, 7200–7208 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    CAS  PubMed  Google Scholar 

  72. Setty, Y., Mayo, A. E., Surette, M. G. & Alon, U. Detailed map of a cis-regulatory input function. Proc. Natl Acad. Sci. USA 100, 7702–7707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sadler, J. R. & Novick, A. The properties of repressor and the kinetics of its action. J. Mol. Biol. 12, 305–327 (1965).

    CAS  PubMed  Google Scholar 

  74. Savageau, M. A. Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229, 542–544 (1971).

    CAS  PubMed  Google Scholar 

  75. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999). Reports an experiment that showed that the tumbling frequency in E. coli chemotaxis is robust in response to changes in the level of the signalling protein CheR, supporting the importance of robustness as a performance criterion for naturally occurring biochemical systems.

    CAS  PubMed  Google Scholar 

  76. Little, J. W., Shepley, D. P. & Wert, D. W. Robustness of a gene regulatory circuit. EMBO J. 18, 4299–4307 (1999). Reports an experiment that showed that phage λ decision circuitry is robust in response to changes in transcriptional control, supporting the importance of robustness as a performance criterion for naturally occurring gene circuits.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002). Describes an experiment that supports the importance of robustness in eukaryotic development. The bone morphogenic protein gradient in Drosophila was found to be robust in response to both temperature changes and to heterozygous mutations in important genes.

    CAS  PubMed  Google Scholar 

  78. Løbner-Olesen, A. Distribution of minichromosomes in individual Escherichia coli cells: implications for replication control. EMBO J. 18, 1712–1721 (1999).

    PubMed  PubMed Central  Google Scholar 

  79. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. Q. Rev. Biophys. 34, 1–59 (2001).

    CAS  PubMed  Google Scholar 

  80. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. USA 98, 8614–8619 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  82. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  84. Blake, W. J., KAErn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    CAS  PubMed  Google Scholar 

  85. Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002).

    CAS  PubMed  Google Scholar 

  86. Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wolf, D. M. & Arkin, A. P. Fifteen minutes of fim: control of type 1 pili expression in E. coli. Omics 6, 91–114 (2002).

    CAS  PubMed  Google Scholar 

  88. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Google Scholar 

  89. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    CAS  PubMed  Google Scholar 

  90. Doyle, M. E., Brown, C., Hogg, R. W. & Helling, R. B. Induction of the ara operon of Escherichia coli B-r. J. Bacteriol. 110, 56–65 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Casadaban, M. J. Regulation of the regulatory gene for the arabinose pathway, araC. J. Mol. Biol. 104, 557–566 (1976).

    CAS  PubMed  Google Scholar 

  92. Hahn, S. & Schleif, R. In vivo regulation of the Escherichia coli araC promoter. J. Bacteriol. 155, 593–600 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Eldar, A., Rosin, D., Shilo, B. Z. & Barkai, N. Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003).

    CAS  PubMed  Google Scholar 

  94. Rosenfeld, N. & Alon, U. Response delays and the structure of transcription networks. J. Mol. Biol. 329, 645–654 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health and by the Department of Energy. Many thanks to the experimentalists who responded to various questions of ours about the gene circuits they have studied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Wall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

EcoCyc

araC-araBAD

cynR-cynTSX

dsdC-dsdXA

lacI-lacZYA

modEF-modABCD

treR-treBC

trpR-trpLEDCBA

tyrR-(aroF-tyrA)

FURTHER INFORMATION

EcoGene

EcoTFs

RegulonDB

Uri Alon's web site

Glossary

OPERON

A genetic unit or cluster that consists of one or more genes that are transcribed as a unit and are expressed in a coordinated manner.

GENETIC REGULATORY CIRCUIT

Also called a gene circuit. The genes and gene products that are involved in the response to a signal.

DESIGN

The constellation of system components, their specific properties and their pattern of interactions that together determine the integrated behaviour of the system. The term 'structure' might also be used but 'design' is preferred when there is a functional context.

DESIGN PRINCIPLES

General concepts that summarize our understanding of how gene-circuit design relates to gene-circuit function.

BIOREMEDIATION

The use of either naturally occurring or deliberately introduced micro-organisms to consume and break down environmental pollutants.

ELEMENTARY GENE CIRCUIT

A gene circuit in which gene expression is regulated by a single transcription factor in response to a signal under a given set of conditions. When conditions change, however, gene expression might come under the influence of extra regulators.

INDUCIBLE

Describes a gene, the expression of which increases in response to a signal in a given environmental background. An inducible system is one in which the effector transcriptional unit is inducible.

REPRESSIBLE

Describes a gene, the expression of which decreases in response to a signal in a given environmental background. A repressible system is one in which the effector transcriptional unit is repressible.

SIGNAL

A natural molecule that acts directly on the transcription factor to bring about a physiological response.

STABILITY

The ability of a system to return to a steady state after a transient disturbance.

ROBUSTNESS

The ability of a system's steady state to remain unchanged, or not significantly changed, when the structure (that is, the parameter values) of the system significantly changes.

RESPONSIVENESS

The ability of a system to settle quickly into a new steady state after an environmental change.

MODE OF CONTROL

Either positive (activator control) or negative (repressor control) according to whether an increase in the level of the transcription factor (other factors being constant) acts to increase or decrease gene expression.

EFFECTOR GENE

A gene that encodes an enzyme and/or another molecule with an effector function (for example, membrane transport).

MODULAR

A (sub-) system of interacting components is modular if it shows behaviour that is independent of the larger system under certain conditions.

PARAMETER SPACE

A list of values for all N parameters of a model corresponds to a point in an N-dimensional parameter space. A specific system type, as specified by constraints on parameter values, corresponds to a region in parameter space.

EXPRESSION CHARACTERISTIC

A plot of the level of expression versus the level of signal over a range of steady states.

GAIN

If y is the level of enzyme, and x is the level of signal, the gain of the system is defined as δlog y/δlog x (where δ = partial derivative). Gain, according to this definition, is also used interchangeably with the term 'logarithmic gain'. Often, the expression characteristic might be described using the Hill equation, y = (1 + x−n)−1, in which case a representative gain of the system in a log-log plot can be δlog y/δlog xn.

EXPRESSION CAPACITY

The ratio of maximal to minimal signal-dependent expression levels.

TRANSCRIPTIONAL UNIT

(TU). A DNA sequence that is transcribed as a single polycistronic mRNA, and might encode one or more individual genes.

TRANSCRIPTIONAL ATTENUATION

A decrease in transcription that results from a disengagement of mRNA polymerase from the DNA before reading through a leader sequence. Attenuation is enhanced by an increase in the level of an amino acid that corresponds to codons that are transcribed from the leader sequence.

CRITICAL GAIN

A model-dependent quantity that is used as a reference to determine whether the system gain is high, intermediate or low. The value can be estimated as the total number of molecules of the signal that bind to control transcription-factor interactions near the promoter of the effector transcriptional unit25,28.

HYSTERESIS

A possible attribute of a switch. A switch with hysteresis has a different threshold for the transition from the OFF state to the ON state compared with the transition from the ON state to the OFF state.

NETWORK MOTIF

A common pattern of connections in a network.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, M., Hlavacek, W. & Savageau, M. Design of gene circuits: lessons from bacteria. Nat Rev Genet 5, 34–42 (2004). https://doi.org/10.1038/nrg1244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing