Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of motor neuron disorders: new insights into pathogenic mechanisms

Key Points

  • Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders that are characterized by muscle weakness and/or spastic paralysis, which results from the selective degeneration of lower motor neurons and/or upper motor neurons, respectively.

  • The MNDs currently being investigated are: amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA) and lethal congenital contracture syndrome (LCCS).

  • ALS is the most common adult-onset MND for which there is no therapeutic treatment currently available. The hallmark of this disease is the selective death of motor neurons in the brain and spinal cord, which leads to the paralysis of voluntary muscles.

  • Family-based linkage studies have led to the identification of eight genes for ALS. The protein products of these mutated genes are superoxide dismutase 1 (SOD1), alsin, senataxin, vesicle-associated membrane protein-associated protein B (VAPB), angiogenin, dynactin, TAR DNA-binding protein 43 (TDP43) and FUS.

  • Mutations in the SOD1 gene are the most common genetic cause of familial ALS and account for 15–20% of autosomal dominant familial ALS cases (1–2% of all ALS cases).

  • HSPs are the second most important group of MNDs in terms of the number of mutations identified and the resulting insights into the pathogenesis of MND. The 45 spastic paraplegia loci and 20 causative genes reported so far suggest various pathogenic mechanisms, including axonal transport, membrane trafficking and mitochondrial dysfunction.

  • RNA-processing defects are observed in several MNDs, and in ALS the TARDBP and FUS genes have provided direct links to defects in RNA processing as a broad pathway that contributes to motor neuron degeneration (however, this is not the case for HSP).

Abstract

The past few years have seen the identification of dozens of genes with causal roles in motor neuron diseases (MNDs), particularly for amyotrophic lateral sclerosis and hereditary spastic paraplegia. Although many additional MND genes remain to be identified, the accumulated genetic evidence has already provided new insights into MND pathogenesis, which adds to the well-established involvement of superoxide dismutase 1 (SOD1) mutations. The pathways that have been recently implicated include those that affect RNA processing, axonal transport and mitochondrial function. The functional classes of MND genes identified so far are likely to aid the selection of high-priority candidate genes for future investigation, including those for so-called sporadic cases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiopathological mechanisms underlying the specific degeneration of motor neurons in amyotrophic lateral sclerosis.
Figure 2: Potential pathogenic mechanisms in hereditary spastic paraplegia.

Similar content being viewed by others

References

  1. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). This report describes the original discovery of SOD1 mutations in FALS cases. SOD1 was the first ALS causative gene to be identified.

    Article  CAS  PubMed  Google Scholar 

  2. Wroe, R., Wai-Ling Butler, A., Andersen, P. M., Powell, J. F. & Al-Chalabi, A. ALSOD: the Amyotrophic Lateral Sclerosis Online Database. Amyotroph. Lateral Scler. 9, 249–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994). This paper reports the first generation and description of an ALS transgenic mouse model.

    Article  CAS  PubMed  Google Scholar 

  5. Rothstein, J. D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann. Neurol. 65, S3–S9 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Li, X. et al. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3′-untranslated region. J. Neurochem. 108, 1032–1044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet. 34, 383–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. 21, 3369–3374 (2001). This paper offers evidence that SOD1 toxicity is not cell autonomous.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. 20, 660–665 (2000). This paper offers evidence surrounding the crucial contribution of astrocytes during the pathogenesis of ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci. 11, 251–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Lobsiger, C. S. & Cleveland, D. W. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nature Neurosci. 10, 1355–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Andersen, P. M. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr. Neurol. Neurosci. Rep. 6, 37–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Andersen, P. M. et al. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain 119, 1153–1172 (1996).

    Article  PubMed  Google Scholar 

  14. Andersen, P. M. et al. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nature Genet. 10, 61–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Hand, C. K. et al. Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family. Ann. Neurol. 49, 267–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Zinman, L. et al. A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology 72, 1153–1159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mount, S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ezzi, S. A., Urushitani, M. & Julien, J. P. Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J. Neurochem. 102, 170–178 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. Kabashi, E., Valdmanis, P. N., Dion, P. & Rouleau, G. A. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann. Neurol. 62, 553–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Rakhit, R. et al. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nature Med. 13, 754–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Jonsson, P. A. et al. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127, 73–88 (2004).

    Article  PubMed  Google Scholar 

  22. Urushitani, M., Ezzi, S. A. & Julien, J. P. Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 104, 2495–2500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006). The two reports above showed that protein aggregates in ALS contain TDP43 and therefore prompted ongoing and extensive investigations into the role of this protein in ALS.

    Article  CAS  PubMed  Google Scholar 

  25. Mackenzie, I. R. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 40, 572–574 (2008). This paper describes eight missense mutations in TARDBP in patients with SALS and FALS and shows that the mutations correspond with the accumulation of a lower-molecular-weight TDP43 fragment.

    Article  CAS  PubMed  Google Scholar 

  27. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008). The authors identify three missense mutations in TARDBP in patients with ALS (including one large family) and provide proof of the effects of these mutations by injecting chick embryos.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daoud, H. et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J. Med. Genet. 46, 112–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Lagier-Tourenne, C. & Cleveland, D. W. Rethinking ALS: the FUS about TDP-43. Cell 136, 1001–1004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corrado, L. et al. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum. Mutat. 30, 688–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Benajiba, L. et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann. Neurol. 65, 470–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Valdmanis, P. N., Daoud, H., Dion, P. A. & Rouleau, G. A. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep. 9, 198–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009). The two papers above describe FUS mutations in the ALS6 locus in cases of FALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abalkhail, H., Mitchell, J., Habgood, J., Orrell, R. & de Belleroche, J. A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1–16q12.2. Am. J. Hum. Genet. 73, 383–389 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruddy, D. M. et al. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am. J. Hum. Genet. 73, 390–396 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sapp, P. C. et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 73, 397–403 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Belzil, V. V. et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology 9 Sep 2009 (doi:10.1212/WNL.0b013e3181bbfeef).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buratti, E. & Baralle, F. E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci. 13, 867–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet. 29, 166–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hentati, A. et al. Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33–q35. Nature Genet. 7, 425–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Gros-Louis, F. et al. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Hum. Mol. Genet. 17, 2691–2702 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Eymard-Pierre, E. et al. Novel missense mutation in ALS2 gene results in infantile ascending hereditary spastic paralysis. Ann. Neurol. 59, 976–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Gros-Louis, F. et al. An ALS2 gene mutation causes hereditary spastic paraplegia in a Pakistani kindred. Ann. Neurol. 53, 144–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet. 12, 1671–1687 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, Y. Z. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hentati, A. et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15–q22 markers. Neurogenetics 2, 55–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Greenway, M. J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nature Genet. 38, 411–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Fernandez-Santiago, R. et al. Identification of novel angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis. J. Neurol. 256, 1432–1459 (2009).

    Article  CAS  Google Scholar 

  52. Gellera, C. et al. Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9, 33–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Paubel, A. et al. Mutations of the ANG gene in French patients with sporadic amyotrophic lateral sclerosis. Arch. Neurol. 65, 1333–1336 (2008).

    Article  PubMed  Google Scholar 

  54. Wu, D. et al. Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol. 62, 609–617 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Es, M. A. et al. A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. Neurology 72, 287–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Sebastia, J. et al. Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ. (2009).

  57. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Munch, C. et al. Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD. Ann. Neurol. 58, 777–780 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. Hand, C. K. et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet. 70, 251–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Siddique, T. et al. X-linked dominant locus for late-onset familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 63 (Suppl.), A308 (1998).

    Google Scholar 

  61. Neary, D., Snowden, J. & Mann, D. Frontotemporal dementia. Lancet Neurol. 4, 771–780 (2005).

    Article  PubMed  Google Scholar 

  62. Talbot, K. & Ansorge, O. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. Hum. Mol. Genet. 15, R182–R187 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Hosler, B. A. et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284, 1664–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Morita, M. et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Valdmanis, P. N. et al. Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Arch. Neurol. 64, 240–245 (2007).

    Article  PubMed  Google Scholar 

  66. Vance, C. et al. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–213. Brain 129, 868–876 (2006).

    Article  PubMed  Google Scholar 

  67. Le Ber, I. et al. Chromosome 9p-linked families with frontotemporal dementia associated with motor neuron disease. Neurology 72, 1669–1676 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Luty, A. A. et al. Pedigree with frontotemporal lobar degeneration — motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9. BMC Neurol. 8, 32 (2008). The six references above describe families with ALS and FTD that were mapped to the chromosome 9p locus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Zarranz, J. J. et al. A novel mutation (K317M) in the MAPT gene causes FTDP and motor neuron disease. Neurology 64, 1578–1585 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Parkinson, N. et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Spina, S. et al. Clinicopathologic features of frontotemporal dementia with Progranulin sequence variation. Neurology 68, 820–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Valdmanis, P. N. & Rouleau, G. A. Genetics of familial amyotrophic lateral sclerosis. Neurology 70, 144–152 (2008).

    Article  PubMed  Google Scholar 

  76. Wills, A. M. et al. A large-scale international meta-analysis of paraoxonase gene polymorphisms in sporadic ALS. Neurology 73, 16–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Schymick, J. C. et al. Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol. 6, 322–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Dunckley, T. et al. Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N. Engl. J. Med. 357, 775–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. van Es, M. A. et al. ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol. 6, 869–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. van Es, M. A. et al. Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nature Genet. 40, 29–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Cronin, S. et al. A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum. Mol. Genet. 17, 768–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Del Bo, R. et al. DPP6 gene variability confers increased risk of developing sporadic amyotrophic lateral sclerosis in Italian patients. J. Neurol. Neurosurg. Psychiatry 79, 1085 (2008).

    CAS  PubMed  Google Scholar 

  84. Cronin, S., Tomik, B., Bradley, D. G., Slowik, A. & Hardiman, O. Screening for replication of genome-wide SNP associations in sporadic ALS. Eur. J. Hum. Genet. 17, 213–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Chiò, A. et al. A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 18, 1524–1532 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Simpson, C. L. et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18, 472–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. van Es, M. A. et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genet. 6 Sep 2009 (doi:10.1038/ng.442).

    Article  CAS  PubMed  Google Scholar 

  88. Kaneko, K., Saito, F., Sunohara, N. & Ikeuchi, T. Cytogenetic analysis of 23 Japanese patients with amyotrophic lateral sclerosis. Clin. Genet. 47, 158–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Meyer, T. et al. High rate of constitutional chromosomal rearrangements in apparently sporadic ALS. Neurology 60, 1348–1350 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Blauw, H. M. et al. Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol. 7, 319–326 (2008). This paper presents the first examination of potential CNVs in ALS.

    Article  CAS  PubMed  Google Scholar 

  91. Cronin, S. et al. Analysis of genome-wide copy number variation in Irish and Dutch ALS populations. Hum. Mol. Genet. 17, 3392–3398 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet. 23, 296–303 (1999). This study shows that mutations in SPAST are the most common cause of autosomal dominant HSP.

    Article  CAS  PubMed  Google Scholar 

  93. Hollenbeck, P. J. & Saxton, W. M. The axonal transport of mitochondria. J. Cell Sci. 118, 5411–5419 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. van Niekerk, E. A. et al. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc. Natl Acad. Sci. USA 104, 12913–12918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Svenson, I. K., Ashley-Koch, A. E., Pericak-Vance, M. A. & Marchuk, D. A. A second leaky splice-site mutation in the spastin gene. Am. J. Hum. Genet. 69, 1407–1409 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Solowska, J. M. et al. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J. Neurosci. 28, 2147–2157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Struct. Mol. Biol. 15, 1278–1286 (2008).

    Article  CAS  Google Scholar 

  99. Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet. 29, 326–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Namekawa, M. et al. SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology 66, 112–114 (2006). This paper reports that mutations in ATL1 account for 10% of cases of autosomal dominant HSP.

    Article  CAS  PubMed  Google Scholar 

  101. Namekawa, M. et al. Mutations in the SPG3A gene encoding the GTPase atlastin interfere with vesicle trafficking in the ER/Golgi interface and Golgi morphogenesis. Mol. Cell Neurosci. 35, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Zhu, P. P., Soderblom, C., Tao-Cheng, J. H., Stadler, J. & Blackstone, C. SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum. Mol. Genet. 15, 1343–1353 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Evans, K. et al. Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc. Natl Acad. Sci. USA 103, 10666–10671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reid, E. et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Goizet, C. et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum. Mutat. 30, E376–E385 (2009).

    Article  PubMed  Google Scholar 

  106. Rainier, S., Chai, J. H., Tokarz, D., Nicholls, R. D. & Fink, J. K. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am. J. Hum. Genet. 73, 967–971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reed, J. A. et al. A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. Neurogenetics 6, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Goytain, A., Hines, R. M., El-Husseini, A. & Quamme, G. A. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J. Biol. Chem. 282, 8060–8068 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, J. et al. Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J. Neurosci. 28, 13938–13951 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, X., Shaw, W. R., Tsang, H. T., Reid, E. & O'Kane, C. J. Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nature Neurosci. 10, 177–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Hanein, S. et al. Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am. J. Hum. Genet. 82, 992–1002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Patel, H. et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nature Genet. 31, 347–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Simpson, M. A. et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am. J. Hum. Genet. 73, 1147–1156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bakowska, J. C., Jupille, H., Fatheddin, P., Puertollano, R. & Blackstone, C. Troyer syndrome protein spartin is mono-ubiquitinated and functions in EGF receptor trafficking. Mol. Biol. Cell 18, 1683–1692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hanna, M. C. & Blackstone, C. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics 10, 217–228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hehr, U. et al. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann. Neurol. 62, 656–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Stevanin, G. et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nature Genet. 39, 366–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Wilkinson, P. A. et al. A clinical, genetic and biochemical study of SPG7 mutations in hereditary spastic paraplegia. Brain 127, 973–980 (2004).

    Article  PubMed  Google Scholar 

  120. Koppen, M., Metodiev, M. D., Casari, G., Rugarli, E. I. & Langer, T. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol. Cell Biol. 27, 758–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest. 113, 231–242 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hansen, J. J. et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328–1332 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hewamadduma, C. A. et al. HSP60 is a rare cause of hereditary spastic paraparesis, but may act as a genetic modifier. Neurology 70, 1717–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Jouet, M. et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nature Genet. 7, 402–407 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Saugier-Veber, P. et al. X-linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet. 6, 257–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Hortsch, M. Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol. Cell Neurosci. 15, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Inoue, K. PLP1-related inherited dysmyelinating disorders: Pelizaeus–Merzbacher disease and spastic paraplegia type 2. Neurogenetics 6, 1–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Tsaousidou, M. K. et al. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am. J. Hum. Genet. 82, 510–515 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lin, P. et al. A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am. J. Hum. Genet. 83, 752–759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hirabayashi, Y., Kanamori, A., Nomura, K. H. & Nomura, K. The acetyl-CoA transporter family SLC33. Pflugers Arch. 447, 760–762 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Kanamori, A. et al. Expression cloning and characterization of a cDNA encoding a novel membrane protein required for the formation of O-acetylated ganglioside: a putative acetyl-CoA transporter. Proc. Natl Acad. Sci. USA 94, 2897–2902 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Orthmann-Murphy, J. L. et al. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132, 426–438 (2009).

    Article  PubMed  Google Scholar 

  133. Valdmanis, P. N. et al. Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am. J. Hum. Genet. 80, 152–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Windpassinger, C. et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genet. 36, 271–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Bohan, T. P. & Azizi, P. Allan–Herndon–Dudley syndrome: should the locus for this hereditary spastic paraplegia be designated SPG 22? Arch. Neurol. 61, 1470–1471 (2004).

    Article  PubMed  Google Scholar 

  136. Beetz, C. et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131, 1078–1086 (2008).

    Article  PubMed  Google Scholar 

  137. Zuchner, S. et al. A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7, 127–129 (2006).

    Article  PubMed  Google Scholar 

  138. Rainier, S. et al. Neuropathy target esterase gene mutations cause motor neuron disease. Am. J. Hum. Genet. 82, 780–785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gordon, P. H., Cheng, B., Katz, I. B., Mitsumoto, H. & Rowland, L. P. Clinical features that distinguish PLS, upper motor neuron-dominant ALS, and typical ALS. Neurology 72, 1948–1952 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Valdmanis, P. N., Dupre, N. & Rouleau, G. A. A locus for primary lateral sclerosis on chromosome 4ptel–4p16.1. Arch. Neurol. 65, 383–386 (2008). The authors describe a French-Canadian family with PLSA1 that maps to chromosome 4p.

    Article  PubMed  Google Scholar 

  141. Mintchev, N., Zamba-Papanicolaou, E., Kleopa, K. A. & Christodoulou, K. A novel ALS2 splice-site mutation in a Cypriot juvenile-onset primary lateral sclerosis family. Neurology 72, 28–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Panzeri, C. et al. The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function. Brain 129, 1710–1719 (2006).

    Article  PubMed  Google Scholar 

  143. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet. 29, 160–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Lorson, C. L. et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nature Genet. 19, 63–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Monani, U. R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Lorson, C. L. & Androphy, E. J. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 9, 259–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995). This paper shows that loss-of-function mutations or deletions of the SMN1 gene cause SMA.

    Article  CAS  PubMed  Google Scholar 

  149. Corcia, P. et al. The importance of the SMN genes in the genetics of sporadic ALS. Amyotroph. Lateral Scler. 6 Mar 2009 (doi:10.1080/17482960902759162).

  150. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991). The authors identified a trinucleotide CAG repeat expansion in the first exon of the AR gene as being responsible for SBMA.

    Article  CAS  PubMed  Google Scholar 

  151. Katsuno, M. et al. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nature Med. 9, 768–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Makela-Bengs, P. et al. Assignment of the disease locus for lethal congenital contracture syndrome to a restricted region of chromosome 9q34, by genome scan using five affected individuals. Am. J. Hum. Genet. 63, 506–516 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nousiainen, H. O. et al. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nature Genet. 40, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Narkis, G. et al. Lethal contractural syndrome type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKI gamma of the phophatidylinsitol pathway. Am. J. Hum. Genet. 81, 530–539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Narkis, G. et al. Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 81, 589–595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chow, C. Y. et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85–88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yeo, G., Holste, D., Kreiman, G. & Burge, C. B. Variation in alternative splicing across human tissues. Genome Biol. 5, R74 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Salinas, S., Proukakis, C., Crosby, A. & Warner, T. T. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 7, 1127–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Boillee, S., Vande Velde, C. & Cleveland, D. W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Hirano, A., Donnenfeld, H., Sasaki, S. & Nakano, I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461–470 (1984).

    Article  CAS  PubMed  Google Scholar 

  162. Hirano, A. et al. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 471–480 (1984).

    Article  CAS  PubMed  Google Scholar 

  163. Khabazian, I. et al. Isolation of various forms of sterol β-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS–parkinsonism dementia complex. J. Neurochem. 82, 516–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Horner, R. D. et al. Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology 61, 742–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Li, C. Y. & Sung, F. C. Association between occupational exposure to power frequency electromagnetic fields and amyotrophic lateral sclerosis: a review. Am. J. Ind. Med. 43, 212–220 (2003).

    Article  PubMed  Google Scholar 

  166. Qureshi, M. M. et al. Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotroph. Lateral Scler. 7, 173–182 (2006).

    Article  PubMed  Google Scholar 

  167. Doi, H. et al. Motor neuron disorder simulating ALS induced by chronic inhalation of pyrethroid insecticides. Neurology 67, 1894–1895 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Weisskopf, M. G. et al. Prospective study of chemical exposures and amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 80, 558–561 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Chio, A., Benzi, G., Dossena, M., Mutani, R. & Mora, G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128, 472–476 (2005).

    Article  PubMed  Google Scholar 

  170. Chio, A. et al. ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph. Lateral Scler. 10, 205–209 (2009).

    Article  PubMed  Google Scholar 

  171. Valenti, M. et al. Amyotrophic lateral sclerosis and sports: a case–control study. Eur. J. Neurol. 12, 223–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, H., Richard, M., Sandler, D. P., Umbach, D. M. & Kamel, F. Head injury and amyotrophic lateral sclerosis. Am. J. Epidemiol. 166, 810–816 (2007).

    Article  PubMed  Google Scholar 

  173. Weisskopf, M. G. et al. Prospective study of cigarette smoking and amyotrophic lateral sclerosis. Am. J. Epidemiol. 160, 26–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Santos-Reboucas, C. B. & Pimentel, M. M. Implication of abnormal epigenetic patterns for human diseases. Eur. J. Hum. Genet. 15, 10–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Migliore, L. & Coppedè, F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res. 667, 82–97 (2008).

    Article  PubMed  CAS  Google Scholar 

  176. Oates, N. & Pamphlett, R. An epigenetic analysis of SOD1 and VEGF in ALS. Amyotroph. Lateral Scler. 8, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Morahan, J. M., Yu, B., Trent, R. J. & Pamphlett, R. Are metallothionein genes silenced in ALS? Toxicol. Lett. 168, 83–87 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Vande Velde and I. A. Meijer for their careful and insightful reading of the manuscript; their ideas and suggestions were welcomed and appreciated. G.A.R. has received MND-related funding from the Canadian Institutes of Health, the Muscular Dystrophy Association ALS Division, the ALS Association and the ALS Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rouleau.

Supplementary information

Related links

Related links

FURTHER INFORMATION

1000 Genomes Project

Glossary

Linkage study

A method of searching for the chromosomal location of a gene by looking for co-segregation of the disease with genetic markers of known chromosomal location within families.

Epigenetics

Changes in gene expression that are stable through cell division but do not involve changes in the underlying DNA sequence. The best-studied example is cellular differentiation, but environmental factors, such as maternal nutrition, can influence epigenetic programming.

Reactive oxygen species

Ions or small molecules that include oxygen ions, free radicals and peroxides, both inorganic and organic.

Hu-antigen R

An RNA-stabilizing protein that is a member of the embryonic lethal abnormal visual (ELAV) family. These proteins recognize the 3′ UTR sequences of mRNAs, in particular the adenine/uridine-rich elements, the widespread occurrence of which suggests that they are involved in the regulation of many biological processes.

Astrocyte

One of the three main cell types in the brain, the others being neurons and oligodendrocytes. Astrocytes act as a scaffold that maintains brain structure and they can alter the extracellular milieu and ionic concentration through the expression of various transporters and channel proteins. They support the functions of neurons and oligodendrocytes.

Cre recombinase

A type I topoisomerase from the P1 bacteriophage that catalyses the site-specific recombination of DNA between loxP sites. It binds to the loxP sites to allow DNA that is cloned between the sites to be removed.

Microglia

Small neuroglial cells of the central nervous system. They have long processes and ameboid and phagocytic activity at sites of neural damage or inflammation.

Schwann cell

A type of non-neuronal brain cell that lacks axons and dendrites and forms axons in the peripheral nervous system.

Microglia activation

Microglia can be activated by several factors, including glutamate receptor agonists, pro-inflammatory cytokines, cell necrosis factors and lipopolysaccharide. Once activated, the cells undergo key morphological changes, including the secretion of cytotoxic factors, recruitment molecules and pro-inflammatory molecules. In addition, activated microglia undergo proliferation to increase their numbers.

Penetrance

The proportion of individuals with a specific genotype who manifest the genotype at the phenotypic level. If the penetrance of a disease allele is 100%, all individuals who carry that allele will express the associated disorder and the genotype is said to be 'completely penetrant'.

Polymorphism

The contemporary definition is any site in the DNA sequence that is present in the population in more than one state. By contrast, the traditional definition is an allele with a population frequency of between >1% and <99%.

Compound heterozygote

A situation in which an individual is heterozygous for two different mutations at the same locus.

Proband

In a family study, the individual who is first identified in the family as having the disease under study.

Heterogeneous nuclear ribonucleoprotein

A complex of RNA and protein that is present in the nucleus during transcription and post-transcriptional modification of pre-mRNA. Such complexes serve as a signal that the pre-mRNA is not yet fully processed and ready for export to the cytoplasm.

Homozygosity mapping

An approach for detecting rare disease-promoting variants. This method detects extensive homozygous haplotypes that are hundreds of kilobases or more in length and that are unique to, or enriched in, affected individuals.

Retrograde motor

Motor proteins bind and transport several different cargoes in nerve cells, including organelles, polymers and vesicles containing neurotransmitters. Retrograde transport runs towards the minus end of the axons.

Frontal lobe

An area of the brain located at the front of each cerebral hemisphere that is involved in higher mental functions. The executive functions of the frontal lobe include the ability to recognize future consequences, override and suppress unacceptable social responses, and determine similarities and differences between things or events.

Anterior temporal lobe

The temporal lobes are regions of the cerebral cortex that are located beneath the Sylvian fissure on both the left and right hemispheres of the brain. The anterior part of the lobes is involved in visual processing and object perception and recognition.

Haploinsufficiency

A condition in a diploid organism in which a single functional copy of a gene results in a phenotype, such as a disease.

Association studies

A gene-discovery strategy that compares allele frequencies in cases and controls to assess the contribution of genetic variants to phenotypes in specific populations.

Meta-analysis

An approach that combines the results of several studies that address a set of related research hypotheses to overcome the problem of reduced statistical power in studies with small sample sizes.

Population stratification

A population that contains several subpopulations that differ in their genetic characteristics.

Genome-wide association studies

The examination of DNA variation (typically SNPs) across the whole genome in a large number of individuals who have been matched for population ancestry and assessed for a disease or trait of interest. Correlations between variants and the trait are used to locate genetic risk factors.

Microsatellite

A class of repetitive DNA that is made up of repeats that are 2–8 nucleotides in length. Microsatellites can be highly polymorphic and are frequently used as molecular markers in population genetics studies.

1000 Genomes Project

An international research effort, launched in 2008, to establish by far the most detailed catalogue of human genetic variation. Plans are to sequence the genomes of at least 1,000 anonymous participants of different ethnic groups over the next 3 years using newly developed technologies.

Copy number variant

A DNA sequence variant (including deletions and duplications) in which the result is a departure from the expected diploid representation of the DNA sequence.

Balanced translocation

A translocation between non-homologous chromosomes in which the exchange occurs with no gain or loss of genetic material.

Midbody

A transient organelle-like structure that is formed during mammalian cell division and persists until just before the complete separation of the dividing cells.

Myelin

An electrically insulating material that usually forms a layer around the axon of a neuron. It is essential for the proper functioning of the nervous system. Schwann cells supply the myelin for peripheral neurons, whereas oligodendrocytes supply it to neurons of the central nervous system.

Anterior horn

The ventral column of grey matter in the spinal cord that contains the cell bodies of motor (efferent) neurons.

Cristae

Internal compartments that are formed by the inner membranes of mitochondria. They contain several key proteins for aerobic respiration, including ATP synthase and various cytochromes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dion, P., Daoud, H. & Rouleau, G. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 10, 769–782 (2009). https://doi.org/10.1038/nrg2680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing