Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rational targeting for prion therapeutics

Key Points

  • Prion diseases, or transmissible spongiform encephalopathies, are fatal neurodegenerative conditions that affect humans and other animals, and are transmissible within or between mammalian species. The recognition in 1996 of a new human prion disease — variant CreutzfeldtJakob disease (vCJD) — and the experimental confirmation that it is caused by bovine spongiform encephalopathy (BSE)-like prions derived from infected beef products have led to fears of a human epidemic.

  • Prion diseases are all associated with the accumulation in the brain of an abnormal, partially protease-resistant, isoform of host-encoded prion protein (PrP). The disease-related isoform (PrPSc) is derived from the normal cellular isoform PrPC by a post-translational process that involves conformational change and aggregation. Many studies support the 'protein-only' hypothesis of prion propagation, according to which an abnormal PrP isoform is the principal, and possibly the sole, constituent of the transmissible agent or prion. Therefore, PrPSc is thought to act as a conformational template, recruiting PrPC to form further PrPSc.

  • However, the cause of neuronal death in prion disease remains unclear. The assumption that neurodegeneration follows from direct toxicity of PrPSc and/or prions has been increasingly challenged. Evidence against the direct toxicity of PrPSc is discussed, with particular reference to the occurrence of sub-clinical forms of prion infection, in which high levels of PrPSc accumulate in the absence of neurotoxicity or clinical symptoms, as well as the more recent demonstration that switching off PrPC expression in mice with neuroinvasive prion disease results in the reversal of early spongiform degeneration and long-term survival of animals despite ongoing non-neuronal PrPSc production.

  • Other potential mechanisms of neurotoxicity in prion diseases are presented, including possible roles for PrPC in cell survival and cell death signalling pathways and the potential toxicity of aberrant PrPC processing and trafficking in neurons.

  • The concept of the generation of neurotoxic forms of PrP, designated 'PrPL' (PrP lethal), during prion replication, which might involve soluble oligomers of misfolded PrP, is emphasized. The rationale for focussing on therapeutic strategies that target normal PrPC rather than PrPSc itself, where stabilizing the native form will prevent the generation of toxic intermediates, is explained.The balance between the production and clearance of PrPL (and PrPSc) in prion infection in determining ultimate neurotoxicity is discussed, with particular relevance for therapeutic intervention.

  • Other therapeutic strategies, including targeting PrPSc and immunotherapeutic modulation, are considered, as well as potential future strategies, such as gene silencing by RNA interference and, ultimately, stem cell therapy for the repair of damaged tissue.

  • Consideration is given to human therapeutic studies and the need for advances in the early diagnosis of prion infection.

Abstract

Prions — pathogens that are lethal to humans and other animals — are thought to be conformational isomers of the cellular prion protein. Their unique biology, and the potential for a wider pathobiological significance of prion-like mechanisms, has motivated much research into understanding prion neurodegeneration. Moreover, concerns that extensive dietary exposure to bovine spongiform encephalopathy (BSE) prions might have infected many individuals — who might eventually develop its human counterpart, variant Creutzfeldt–Jakob disease (vCJD) — has focused much interest on therapeutics. The challenge of interrupting this aggressive, diffuse and uniformly fatal neurodegenerative process is daunting. However, the recent finding that the onset of clinical disease in established neuroinvasive prion infection in a mouse model can be halted and early pathology reversed is a source for considerable optimism. A therapeutic focus on the cellular prion protein, rather than prions themselves, which might not be directly neurotoxic, is suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of prion propagation.
Figure 2: Hypothetical mechanisms of prion neurotoxicity
Figure 3: Model of late-onset PrP depletion in mice by Cre-mediated recombination.
Figure 4: PrPC depletion in neurons of mice with established CNS prion infection reverses early spongiosis and prevents neuronal loss.
Figure 5: Survival of prion-infected mice after PrPC depletion.

Similar content being viewed by others

References

  1. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001).

    CAS  PubMed  Google Scholar 

  2. Ghani, A. C., Donnelly, C. A., Ferguson, N. M. & Anderson, R. M. The transmission dynamics of BSE and vCJD. C. R. Acad. Sci. III 325, 37–47 (2002).

    Google Scholar 

  3. Will, R. G. et al. A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347, 921–925 (1996).

    CAS  PubMed  Google Scholar 

  4. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996). Prion strains are associated with biochemical differences in PrPSc (see reference 143). This article shows that distinct biochemical properties of human PrPSc that are derived from several phenotypes of CJD can be faithfully transmitted to transgenic mice, and shows the application of such 'molecular strain typing' of prion isolates to investigate the aetiology of vCJD. Also describes the molecular signature of the BSE strain and provides the first strong evidence that vCJD is causally linked to BSE, a conclusion reinforced by subsequent biological strain typing (see references 5 and 6).

    CAS  PubMed  Google Scholar 

  5. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997).

    CAS  PubMed  Google Scholar 

  6. Bruce, M. E. et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 389, 498–501 (1997).

    CAS  PubMed  Google Scholar 

  7. Collinge, J. Variant Creutzfeldt–Jakob disease. Lancet 354, 317–323 (1999).

    CAS  PubMed  Google Scholar 

  8. Ghani, A. C., Donnelly, C. A., Ferguson, N. M. & Anderson, R. M. Updated projections of future vCJD deaths in the UK. BMC Infect. Dis. 3, 4 (2003).

    PubMed  PubMed Central  Google Scholar 

  9. Lloyd, S. E. et al. Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc. Natl Acad. Sci. USA 98, 6279–6283 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hilton, D. A. et al. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J. Pathol. 203, 733–739 (2004).

    CAS  PubMed  Google Scholar 

  11. Asante, E. A. et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J. 21, 6358–6366 (2002). A paper reporting that BSE prion infection of transgenic mice that express human PrP M129 results in the propagation of two distinct strains — one that resembles vCJD and the other that resembles a sub-type of sporadic CJD — which indicates that human BSE infection might result in more than one phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffith, J. S. Self replication and scrapie. Nature 215, 1043–1044 (1967). The first description of the protein-only hypothesis. Three possible theoretical mechanisms for protein-only propagation are proposed, one of which closely resembles current thinking on mechanisms and predicts that there are several strains of agent.

    CAS  PubMed  Google Scholar 

  13. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982). The development of the protein-only hypothesis into biochemical terms, and the original definition of the term prion to differentiate these agents from conventional pathogens.

    CAS  PubMed  Google Scholar 

  14. Jackson, G. S. et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999). This paper shows that recombinant PrP can be interconverted between native and fibrilogenic conformations that are rich in α- and β-secondary structure, respectively, under reducing and acidic conditions that are comparable to those found in the endocytic compartment.

    CAS  PubMed  Google Scholar 

  15. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    CAS  PubMed  Google Scholar 

  16. Aguzzi, A., Glatzel, M., Montrasio, F., Prinz, M. & Heppner, F. L. Interventional strategies against prion diseases. Nature Rev. Neurosci. 2, 745–749 (2001).

    CAS  Google Scholar 

  17. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002). The first effective in vivo knockout of PrPC expression in adult neurons. The lack of overt phenotype, in particular neurodegeneration, effectively excluded the loss of PrPC function as the cause of neuronal death in prion diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hill, A. F., Zeidler, M., Ironside, J. & Collinge, J. Diagnosis of new variant Creutzfeldt–Jakob disease by tonsil biopsy. Lancet 349, 99–100 (1997). This report, together with more detailed studies in reference 19, shows that vCJD can be diagnosed during life by tonsil biopsy.

    CAS  PubMed  Google Scholar 

  19. Hill, A. F. et al. Investigation of variant Creutzfeldt–Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183–189 (1999).

    CAS  PubMed  Google Scholar 

  20. Hilton, D. A., Fathers, E., Edwards, P., Ironside, J. W. & Zajicek, J. Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt–Jakob disease. Lancet 352, 703–704 (1998). Adding to knowledge of pathogenesis from animal models, this paper argues that tonsillar infection is likely to have been longstanding at clinical onset, therefore allowing not only early diagnosis, but also population screening by examination of archival surgical tissues (see reference 10).

    CAS  PubMed  Google Scholar 

  21. Muller, W. E. et al. Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur. J. Pharmacol. 246, 261–267 (1993).

    CAS  PubMed  Google Scholar 

  22. Forloni, G. et al. Neurotoxicity of a prion protein fragment. Nature 362, 543–546 (1993).

    CAS  PubMed  Google Scholar 

  23. Collinge, J. et al. Transmission of fatal familial insomnia to laboratory animals. Lancet 346, 569–570 (1995).

    CAS  PubMed  Google Scholar 

  24. Medori, R. et al. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology 42, 669–670 (1992).

    CAS  PubMed  Google Scholar 

  25. Tateishi, J. et al. in Prion Diseases of Humans and Animals (eds Prusiner, S. B., Collinge, J., Powell, J. & Anderton, B.) (Ellis Horwood, London, 1992).

    Google Scholar 

  26. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993). This is a seminal study that, together with references 27 and 43, shows the absolute requirement for PrPC expression for prion propagation and the development of neuropathology.

    CAS  PubMed  Google Scholar 

  27. Sailer, A., Bueler, H., Fischer, M., Aguzzi, A. & Weissmann, C. No propagation of prions in mice devoid of PrP. Cell 77, 967–968 (1994).

    CAS  PubMed  Google Scholar 

  28. Manson, J. C., Clarke, A. R., McBride, P. A., McConnell, I. & Hope, J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3, 331–340 (1994).

    CAS  PubMed  Google Scholar 

  29. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    CAS  PubMed  Google Scholar 

  30. Hill, A. F. et al. Species barrier independent prion replication in apparently resistant species. Proc. Natl Acad. Sci. USA 97, 10248–10253 (2000). This article reports on the uncoupling of neurotoxicity and PrPSc (and prion) accumulation in vivo , and describes sub-clinical prion infection in an animal model, in which animals do not develop clinical scrapie during their lifespan despite high prion titres in the brain. This paper also challenges current concepts of species or transmission barriers that have so far been quantified by scoring the onset of clinical disease, rather than infection, in animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003). The first report of an intervention that halts the progression of established CNS prion disease and reverses early spongiform pathology. This interruption of onset of clinical disease occurred despite the continued accumulation of PrPSc and a rise in prion titre to levels seen in end-stage conventional infections.

    CAS  PubMed  Google Scholar 

  32. Hill, A. F. & Collinge, J. Subclinical prion infection in humans and animals. Br. Med. Bull. 66, 161–170 (2003).

    CAS  PubMed  Google Scholar 

  33. Hill, A. F. & Collinge, J. Subclinical prion infection. Trends Microbiol. 11, 578–584 (2003).

    CAS  PubMed  Google Scholar 

  34. Yedidia, Y., Horonchik, L., Tzaban, S., Yanai, A. & Taraboulos, A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J. 20, 5383–5391 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785 (2002). A study arguing that aberrant cellular processing and the cytoplasmic location of PrP are mechanisms of prion neurotoxicity, which is challenged by others (see references 77 and 78).

    CAS  PubMed  Google Scholar 

  36. Hegde, R. S. et al. A transmembrane from of the prion protein in neurodegenerative disease. Science 279, 827–834 (1998). A paper that describes the transmembrane forms of particular PrP mutants and their associated cellular toxicity, consistent with the neurotoxicity of altered PrP topography in some cases.

    CAS  PubMed  Google Scholar 

  37. Hedge, R. S. et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822–826 (1999).

    Google Scholar 

  38. Keshet, G. I., Ovadia, H., Taraboulos, A. & Gabizon, R. Scrapie-infected mice and PrP knockout mice share abnormal localization and activity of neuronal nitric oxide synthase. J. Neurochem. 72, 1224–1231 (1999).

    CAS  PubMed  Google Scholar 

  39. Collinge, J. et al. Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    CAS  PubMed  Google Scholar 

  40. Whittington, M. A. et al. Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nature Genet. 9, 197–201 (1995).

    CAS  PubMed  Google Scholar 

  41. Manson, J. C. et al. PrP gene dosage and long term potentiation. Neurodegeneration 4, 113–114 (1995).

    CAS  PubMed  Google Scholar 

  42. Colling, S. B., Collinge, J. & Jefferys, J. G. Hippocampal slices from prion protein null mice: disrupted Ca2+-activated K+ currents. Neurosci. Lett. 209, 49–52 (1996).

    CAS  PubMed  Google Scholar 

  43. Bueler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    CAS  PubMed  Google Scholar 

  44. Manson, J. C. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121–127 (1994).

    CAS  PubMed  Google Scholar 

  45. Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).

    CAS  PubMed  Google Scholar 

  46. Kuwahara, C. et al. Prions prevent neuronal cell-line death. Nature 400, 225–226 (1999).

    CAS  PubMed  Google Scholar 

  47. Bounhar, Y., Zhang, Y., Goodyer, C. G. & LeBlanc, A. Prion protein protects human neurons against Bax-mediated apoptosis. J. Biol. Chem. 276, 39145–39149 (2001).

    CAS  PubMed  Google Scholar 

  48. Roucou, X., Guo, Q., Zhang, Y., Goodyer, C. G. & LeBlanc, A. C. Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J. Biol. Chem. 278, 40877–40881 (2003).

    CAS  PubMed  Google Scholar 

  49. Chiarini, L. B. et al. Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shmerling, D. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214 (1998).

    CAS  PubMed  Google Scholar 

  51. Moore, R. C. et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein Doppel. J. Mol. Biol. 292, 797–817 (1999).

    CAS  PubMed  Google Scholar 

  52. Rossi, D. et al. Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J. 20, 694–702 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nishida, N. et al. A mouse prion protein transgene rescues mice deficient for the prion protein gene from Purkinje cell degeneration and demyelination. Lab. Invest. 79, 689–697 (1999).

    CAS  PubMed  Google Scholar 

  54. Weissmann, C. & Aguzzi, A. Perspectives: neurobiology. PrP's double causes trouble. Science 286, 914–915 (1999).

    CAS  PubMed  Google Scholar 

  55. Solforosi, L. et al. Crosslinking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004). A report of rapid neuronal apoptosis in mice that underwent stereotaxic hippocampal inoculation with PrP antibodies, indicating a possible link between PrPC crosslinking and cell death and cell survival signalling pathways.

    CAS  PubMed  Google Scholar 

  56. Naslavsky, N., Stein, R., Yanai, A., Friedlander, G. & Taraboulos, A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J. Biol. Chem. 272, 6324–6331 (1997).

    CAS  PubMed  Google Scholar 

  57. Henke, R. C., Seeto, G. S. & Jeffrey, P. L. Thy-1 and AvGp50 signal transduction complex in the avian nervous system: c-Fyn and Gαi protein association and activation of signalling pathways. J. Neurosci. Res. 49, 655–670 (1997).

    CAS  PubMed  Google Scholar 

  58. Drevot, P. et al. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mouillet-Richard, S. et al. Signal transduction through prion protein. Science 289, 1925–1928 (2000).

    CAS  PubMed  Google Scholar 

  60. Chen, S., Mange, A., Dong, L., Lehmann, S. & Schachner, M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell. Neurosci. 22, 227–233 (2003).

    CAS  PubMed  Google Scholar 

  61. Zanata, S. M. et al. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 3307–3316 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rieger, R., Edenhofer, F., Lasmézas, C. I. & Weiss, S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nature Med. 3, 1383–1388 (1997).

    CAS  PubMed  Google Scholar 

  63. Leucht, C. et al. The 37 kDa/67 kDa laminin receptor is required for PrPSc propagation in scrapie-infected neuronal cells. EMBO Rep. 4, 439 (2003).

    CAS  PubMed Central  Google Scholar 

  64. Simoneau, S. et al. Different isoforms of the non-integrin laminin receptor are present in mouse brain and bind PrP. Biol. Chem. 384, 243–246 (2003).

    CAS  PubMed  Google Scholar 

  65. Graner, E. et al. Cellular prion protein binds laminin and mediates neuritogenesis. Mol. Brain Res. 76, 85–92 (2000).

    CAS  PubMed  Google Scholar 

  66. Stahl, N., Borchelt, D. R., Hsiao, K. & Prusiner, S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240 (1987).

    CAS  PubMed  Google Scholar 

  67. Shyng, S. -L., Huber, M. T. & Harris, D. A. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem. 268, 15922–15928 (1993).

    CAS  PubMed  Google Scholar 

  68. Shyng, S. -L., Heuser, J. E. & Harris, D. A. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125, 1239–1250 (1994).

    CAS  PubMed  Google Scholar 

  69. Caughey, B., Race, R. E., Ernst, D., Buchmeier, M. J. & Chesebro, B. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J. Virol. 63, 175–181 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Taraboulos, A., Raeber, A., Borchelt, D. R., Serban, D. & Prusiner, S. B. Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3, 851–863 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002).

    CAS  Google Scholar 

  72. Zanusso, G. et al. Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J. Biol. Chem. 274, 23396–23404 (1999).

    CAS  PubMed  Google Scholar 

  73. Jin, T. C. et al. The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J. Biol. Chem. 275, 38699–38704 (2000).

    CAS  PubMed  Google Scholar 

  74. Ma, J. Y. & Lindquist, S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc. Natl Acad. Sci. USA 98, 14955–14960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cohen, E. & Taraboulos, A. Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J. 22, 404–417 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, J. & Lindquist, S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788 (2002).

    CAS  PubMed  Google Scholar 

  77. Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem. 278, 21732–21743 (2003).

    CAS  PubMed  Google Scholar 

  78. Stewart, R. S. & Harris, D. A. Mutational analysis of topological determinants in PrP, and measurement of transmembrane and cytosolic PrP during prion infection. J. Biol. Chem. 278, 45960–45968 (2003).

    CAS  PubMed  Google Scholar 

  79. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    CAS  PubMed  Google Scholar 

  80. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  81. Hensley, K. et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl Acad. Sci. USA 91, 3270–3274 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mark, R. J., Pang, Z., Geddes, J. W., Uchida, K. & Mattson, M. P. Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    CAS  PubMed  Google Scholar 

  84. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003). A study that implicates the common structure of soluble amyloid oligomers in mechanisms of neurotoxicity in protein misfolding diseases, further developing the concept of toxic intermediate species in these disorders.

    CAS  PubMed  Google Scholar 

  85. Caughey, B. & Raymond, G. J. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 643–650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mangé, A. et al. Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J. Virol. 74, 3135–3140 (2000).

    PubMed  PubMed Central  Google Scholar 

  87. Caughey, W. S., Raymond, L. D., Horiuchi, M. & Caughey, B. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl Acad. Sci. USA 95, 12117–12122 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Korth, C., May, B. C., Cohen, F. E. & Prusiner, S. B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci. USA 98, 9836–9841 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Farquhar, C. F. & Dickinson, A. G. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J. Gen. Virol. 67, 463–473 (1986).

    CAS  PubMed  Google Scholar 

  90. Ingrosso, L., Ladogana, A. & Pocchiari, M. Congo red prolongs the incubation period in scrapie-infected hamsters. J. Virol. 69, 506–508 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ladogana, A. et al. Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J. Gen. Virol. 73, 661–665 (1992).

    CAS  PubMed  Google Scholar 

  92. Tagliavini, F. et al. Effectiveness of anthracycline against experimental prion disease in syrian hamsters. Science 276, 1119–1122 (1997).

    CAS  PubMed  Google Scholar 

  93. McKenzie, D., Kaczkowski, J., Marsh, R. & Aiken, J. Amphotericin B delays both scrapie agent replication and PrP-res accumulation early in infection. J. Virol. 68, 7534–7536 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Priola, S. A., Raines, A. & Caughey, W. S. Porphyrin and phthalocyanine antiscrapie compounds. Science 287, 1503–1506 (2000).

    CAS  PubMed  Google Scholar 

  95. Doh-ura, K. et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J. Virol. 78, 4999–5006 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Demaimay, R. et al. Late treatment with polyene antibiotics can prolong the survival time of scrapie-infected animals. J. Virol. 71, 9685–9689 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, H. et al. Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry 36, 3543–3553 (1997).

    CAS  PubMed  Google Scholar 

  98. Hosszu, L. L. P. et al. Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nature Struct. Biol. 6, 740–743 (1999). This article describes the use of hydrogen–deuterium exchange to study PrP folding, and indicates that PrP must proceed through a largely unfolded state to re-fold into a PrPSc-like form that is composed largely of β-sheet secondary structure.

    CAS  PubMed  Google Scholar 

  99. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    CAS  PubMed  Google Scholar 

  100. Klabunde, T. et al. Rational design of potent human transthyretin amyloid disease inhibitors. Nature Struct. Biol. 7, 312–321 (2000).

    CAS  PubMed  Google Scholar 

  101. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001). The first of a series of in vitro and in vivo studies that show the potential of passive immunization with anti-PrP antibodies to treat prion disease (see also references 102–106).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    CAS  PubMed  Google Scholar 

  103. Gilch, S. et al. Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J. Biol. Chem. 278, 18524–18531 (2003).

    CAS  PubMed  Google Scholar 

  104. Heppner, F. L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001).

    CAS  PubMed  Google Scholar 

  105. White, A. R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    CAS  PubMed  Google Scholar 

  106. Sigurdsson, E. M. et al. Immunization delays the onset of prion disease in mice. Am. J. Pathol. 161, 13–17 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwarz, A. et al. Immunisation with a synthetic prion protein-derived peptide prolongs survival times of mice orally exposed to the scrapie agent. Neurosci. Lett. 350, 187–189 (2003).

    CAS  PubMed  Google Scholar 

  108. Mattson, M. P. & Chan, S. L. Good and bad amyloid antibodies. Science 301, 1847–1849 (2003). This article provides a note of caution about antibody therapy in Alzheimer's disease: anti-Aβ40-42 can have both protective and noxious effects.

    CAS  PubMed  Google Scholar 

  109. Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med. 9, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  110. Mabbott, N. A. et al. Tumor necrosis factor α-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J. Virol. 74, 3338–3344 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Med. 5, 1308–1312 (1999).

    CAS  PubMed  Google Scholar 

  112. Mabbott, N. A., McGovern, G., Jeffrey, M. & Bruce, M. E. Temporary blockade of the tumor necrosis factor receptor signaling pathway impedes the spread of scrapie to the brain. J. Virol. 76, 5131–5139 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492 (2001).

    CAS  PubMed  Google Scholar 

  114. Mabbott, N. A., Bruce, M. E., Botto, M., Walport, M. J. & Pepys, M. B. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Med. 7, 485–487 (2001).

    CAS  PubMed  Google Scholar 

  115. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    CAS  PubMed  Google Scholar 

  116. Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719–720 (2000).

    CAS  PubMed  Google Scholar 

  117. Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    CAS  PubMed  Google Scholar 

  119. Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 4, 457–467 (2003).

    CAS  Google Scholar 

  120. Miller, V. M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl Acad. Sci. USA 100, 7195–7200 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Xia, H., Mao, Q., Paulson, H. L. & Davidson, B. L. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnol. 20, 1006–1010 (2002).

    CAS  Google Scholar 

  122. Blomer, U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    CAS  PubMed  Google Scholar 

  124. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci. 4, 353–364 (2003).

    CAS  Google Scholar 

  125. Caplen, N. J. et al. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet. 11, 175–184 (2002).

    CAS  PubMed  Google Scholar 

  126. Davidson, B. L. & Paulson, H. L. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol. 3, 145–149 (2004).

    CAS  PubMed  Google Scholar 

  127. Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L. & DiLeone, R. J. Local gene knockdown in the brain using viral-mediated RNA interference. Nature Med. 9, 1539–1544 (2003). A report on the use of RNAi for local gene knockout in the brain.

    CAS  PubMed  Google Scholar 

  128. Bosch, A., Perret, E., Desmaris, N., Trono, D. & Heard, J. M. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther. 11, 1139–1150 (2000).

    CAS  PubMed  Google Scholar 

  129. Tilly, G., Chapuis, J., Vilette, D., Laude, H. & Vilotte, J. L. Efficient and specific downregulation of prion protein expression by RNAi. Biochem. Biophys. Res. Commun. 305, 548–551 (2003).

    CAS  PubMed  Google Scholar 

  130. Daude, N., Marella, M. & Chabry, J. Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J. Cell Sci. 116, 2775–2779 (2003).

    CAS  PubMed  Google Scholar 

  131. McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    CAS  PubMed  Google Scholar 

  132. Alvarez-Buylla, A., Herrera, D. G. & Wichterle, H. The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res. 127, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  133. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Google Scholar 

  134. Park, K. I., Teng, Y. D. & Snyder, E. Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnol. 20, 1111–1117 (2002).

    CAS  Google Scholar 

  135. Rosenberg, M. B. et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578 (1988).

    CAS  PubMed  Google Scholar 

  136. Herrlinger, U. et al. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol. Ther. 1, 347–357 (2000).

    CAS  PubMed  Google Scholar 

  137. Mordelet, E. et al. Brain engraftment of autologous macrophages transduced with a lentiviral flap vector: an approach to complement brain dysfunctions. Gene Ther. 9, 46–52 (2002).

    CAS  PubMed  Google Scholar 

  138. Hughes, S. M., Moussavi-Harami, F., Sauter, S. L. & Davidson, B. L. Viral-mediated gene transfer to mouse primary neural progenitor cells. Mol. Ther. 5, 16–24 (2002).

    CAS  PubMed  Google Scholar 

  139. Conner, J. M., Darracq, M. A., Roberts, J. & Tuszynski, M. H. Nontropic actions of neurotrophins: subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc. Natl Acad. Sci. USA 98, 1941–1946 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Stephenson, D. A. et al. Quantitative trait loci affecting prion incubation time in mice. Genomics 69, 47–53 (2000).

    CAS  PubMed  Google Scholar 

  141. Manolakou, K. et al. Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc. Natl Acad. Sci. USA 98, 7402–7407 (2001). This article and references 9 and 140 describe important genetic linkage studies that confirm the presence of several key loci that determine the prion incubation period in mice, in addition to Prnp.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mead, S. et al. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300, 640–643 (2003).

    CAS  PubMed  Google Scholar 

  143. Collinge, J., Palmer, M. S. & Dryden, A. J. Genetic predisposition to iatrogenic Creutzfeldt–Jakob disease. Lancet 337, 1441–1442 (1991).

    CAS  PubMed  Google Scholar 

  144. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352, 340–342 (1991).

    CAS  PubMed  Google Scholar 

  145. Bessen, R. A. & Marsh, R. F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Parchi, P. et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt–Jakob Disease. Ann. Neurol. 39, 767–778 (1996).

    CAS  PubMed  Google Scholar 

  147. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 (1996).

    CAS  PubMed  Google Scholar 

  148. Hill, A. F. et al. Molecular classification of sporadic Creutzfeldt–Jakob disease. Brain 126, 1333–1346 (2003).

    PubMed  Google Scholar 

  149. Bruce, M. E., Fraser, H., McBride, P. A., Scott, J. R. & Dickinson, A. G. Prion Diseases in Human and Animals (eds Prusiner, S. B., Collinge, J., Powell, J. & Anderton, B.) (Ellis Horwood, London, 1992).

    Google Scholar 

  150. Lloyd, S. E. et al. Characterization of two distinct prion strains derived from bovine spongiform encephalopathy transmissions to inbred mice. J. Gen. Virol. 85, 2471–2478 (2004).

    CAS  PubMed  Google Scholar 

  151. Otto, M. et al. Efficacy of flupirtine on cognitive function in patients with CJD: a double-blind study. Neurology 62, 714–718 (2004).

    CAS  PubMed  Google Scholar 

  152. Klohn, P. C., Stoltze, L., Flechsig, E., Enari, M. & Weissmann, C. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc. Natl Acad. Sci. USA 100, 11666–11671 (2003).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Young for help with graphics and C. Trevitt for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Collinge.

Ethics declarations

Competing interests

John Collinge is a director and shareholder of DGen Ltd, an academic spin-off company.

Related links

Related links

DATABASES

Entrez

BCL2

DPL

PrP

TNF-α

TP53

TTR

OMIM

Alzheimer's disease

CJD

Gerstmann–Sträussler–Scheinker disease

kuru

FURTHER INFORMATION

Current Controlled Trials — Quinacrine for human prion disease

Consumer workshop on clinical trials for CJD

Glossary

PRION

The transmissible agent that is responsible for prion diseases, which, according to the 'protein-only' hypothesis, lacks an agent-specific nucleic acid genome and is composed principally or entirely of a conformational isomer of cellular prion protein. A term that was originally coined by Prusiner from 'proteinaceous infectious particle'.

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

(Prion diseases). Transmissible neurodegenerative diseases of mammals that are characterized by neuronal loss, astrocytosis, spongiform vacuolation and accumulation of the disease-associated isoform of prion protein (PrPSc), sometimes with the formation of amyloid deposits. They are transmissible both within and between species.

PrPC

The normal cellular isoform of mature prion protein. It is a glycosyl phosphatidylinositol (GPI)-anchored cell surface molecule that is highly expressed in neurons, and often associated with raft-like structures in the outer leaflet of the plasma membrane. It consists of a globular, predominantly α-helical, carboxy-terminal domain and an amino-terminal tail that is unstructured in conditions used for solution structure determination.

PrPSc

The disease-associated isoform of prion protein (PrP), which was originally distinguished from PrPC by its biochemical properties — its relative resistance to proteolysis and detergent insolubility. It is isolated from infected animals as highly aggregated material that appears rich in β-sheet secondary structure. Although it is sometimes used as shorthand for the infectious agent, neither PrPSc nor the infectious agent itself have yet been clearly defined at the atomical level.

β-PrP

A β-sheet-rich monomeric form of prion protein (PrP) that can be generated from disulphide-reduced PrP in acidic conditions in vitro. β-PrP has PrPSc-like properties and rapidly aggregates and then forms fibrillary structures in physiological salt concentrations.

SUB-CLINICAL PRION INFECTION

Prion diseases are typically associated with prolonged, clinically silent incubation periods before overt neurological disease occurs. However, asymptomatic carrier states of prion infection — sub-clinical infections — have been described in animal models in which animals do not develop clinical prion disease during their lifespan despite high prion titres in the brain.

CONDITIONAL KNOCKOUT

A process by which a gene or its product is knocked out using conditional genetic or recombinant DNA technology. Temporal and spatial features of the knockout are determined by promoter and other elements that control the expression of the protein that is expressed to delete it, such as the phage P1 enzyme Cre recombinase.

ENDOPLASMIC RETICULUM-ASSOCIATED DEGRADATION

(ERAD). A quality control mechanism for protein synthesis in the endoplasmic reticulum (ER). Misfolded proteins are directed by the ER to proteasomes in the cytoplasm for degradation.

Cre RECOMBINASE

Phage P1-derived DNA recombinase that excises DNA sequences that are flanked by loxP sequences with the same orientation. It is effective in mammalian cells in vitro and in vivo.

loxP SEQUENCE

A 34-base-pair sequence for recognition by Cre recombinase. One loxP site remains after Cre-mediated excision.

RNA INTERFERENCE

(RNAi). Describes the use of double-stranded RNA to target specific messenger RNAs for degradation, thereby silencing their expression. RNAi is one of several RNA-silencing phenomena that occur in plants, animals and fungi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallucci, G., Collinge, J. Rational targeting for prion therapeutics. Nat Rev Neurosci 6, 23–34 (2005). https://doi.org/10.1038/nrn1584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing