Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Initiation to end point: the multiple roles of fibroblast growth factors in neural development

Key Points

  • FGFs are established as key players during neural induction and also during the induction of ectodermal placodes and possibly the neural crest.

  • FGFs are utilised in the posteriorization of the neural plate and then redeployed in several organizing centres to regulate further subdivision of the CNS.

  • The regulation of survival and differentiation by FGFs is a general theme during development. A mitogenic function may be more restricted within the developing nervous system.

  • The regulation and maintenance of several stem cell niches has been demonstrated in vivo, and FGFs are extensively used to direct neural stem cell development in vitro.

  • New roles for FGFs in both axon guidance and synaptogenesis have recently been identified.

  • There are clear associations for FGFs with human developmental diseases, notably Kallmann syndrome and 22q11 syndromes, and potential links with schizophrenia and Parkinson's disease.

Abstract

From a wealth of experimental findings, derived from both in vitro and in vivo experiments, it is becoming clear that fibroblast growth factors regulate processes that are central to all aspects of nervous system development. Some of these functions are well known, whereas others, such as the roles of these proteins in axon guidance and synaptogenesis, have been established only recently. The emergent picture is one of remarkable economy, in which this family of ligands is deployed and redeployed at successive developmental stages to sculpt the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibroblast growth factor (FGF) structure and phylogeny.
Figure 2: Fibroblast growth factor receptor (FGFR) structure.
Figure 3: Signalling through fibroblast growth factor receptors (FGFRs).
Figure 4: Sites of fibroblast growth factor (FGF) signalling during neural induction and patterning.
Figure 5: Fibroblast growth factor (FGF) functions in ectodermal placode development.
Figure 6: Fibroblast growth factor (FGF) functions during neural crest development.

Similar content being viewed by others

References

  1. Baird, A. & Klagsbrun, M. The fibroblast growth factor family. Ann. NY Acad. Sci. 638, 1?513 (1991).

    Article  Google Scholar 

  2. Ornitz, D. M. & Itoh, N. Fibroblast growth factors. Genome Biol. 9 March 2001 (doi:10.1186/gb-2001-2-3-reviews3005).

  3. Itoh, N. & Ornitz, D. M. Evolution of the Fgf and Fgfr gene families. Trends Genet. 20, 563?569 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Popovici, C., Roubin, R., Coulier, F. & Birnbaum, D. An evolutionary history of the FGF superfamily. Bioessays 27, 849?857 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Satou, Y., Imai, K. S. & Satoh, N. Fgf genes in the basal chordate Ciona intestinalis. Dev. Genes Evol. 212, 432?438 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Olsen, S. K. et al. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. 20, 185?198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldfarb, M. Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev. 16, 215?220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanchez-Heras, E., Howell, F. V., Williams, G. & Doherty, P. The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J. Biol. Chem. 281, 35208?35216 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Forni, J. J., Romani, S., Doherty, P. & Tear, G. Neuroglian and FasciclinII can promote neurite outgrowth via the FGF receptor Heartless. Mol. Cell. Neurosci. 26, 282?291 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Trueb, B., Zhuang, L., Taeschler, S. & Wiedemann, M. Characterization of FGFRL1, a novel fibroblast growth factor (FGF) receptor preferentially expressed in skeletal tissues. J. Biol. Chem. 278, 33857?33865 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Plotnikov, A. N., Hubbard, S. R., Schlessinger, J. & Mohammadi, M. Crystal structures of two FGF?FGFR complexes reveal the determinants of ligand?receptor specificity. Cell 101, 413?424 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, X. et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281, 15694?15700 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292?15297 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16, 107?137 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Knox, S., Merry, C., Stringer, S., Melrose, J. & Whitelock, J. Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J. Biol. Chem. 14, 14657?14665 (2002).

    Article  CAS  Google Scholar 

  16. Dailey, L., Ambrosetti, D., Mansukhani, A. & Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 16, 233?247 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139?149 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tsang, M. & Dawid, I. B. Promotion and attenuation of FGF signaling through the Ras?MAPK pathway. Sci. STKE, 13 April 2004 (doi:10.1126/stke.2282004pe17).

  19. Bryant, D. M. & Stow, J. L. Nuclear translocation of cell-surface receptors: lessons from fibroblast growth factor. Traffic 6, 947?954 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lamb, T. M. & Harland, R. M. Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior?posterior neural pattern. Development 121, 3627?3636 (1995).

    CAS  PubMed  Google Scholar 

  21. Launay, C., Fromentoux, V., Shi, D. L. & Boucaut, J. C. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869?880 (1996).

    CAS  PubMed  Google Scholar 

  22. Kengaku, M. & Okamoto, H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121?3130 (1995). References 20?22 were the first studies to implicate FGFs in neural induction.

    CAS  PubMed  Google Scholar 

  23. Stern, C. D. Neural induction: old problem, new findings, yet more questions. Development 132, 2007?2021 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Stern, C. D. Neural induction: 10 years on since the 'default model'. Curr. Opin. Cell Biol. 18, 692?697 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74?78 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421?429 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Albazerchi, A. & Stern, C. D. A role for the hypoblast (AVE) in the initiation of neural induction, independent of its ability to position the primitive streak. Dev. Biol. 301, 489?503 (2007). A key study that implicates FGF signalling at the onset of neural induction, but which indicates that additional signals are required to achieve a definitive neural state.

    Article  CAS  PubMed  Google Scholar 

  28. Linker, C. & Stern, C. D. Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development 131, 5671?5681 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439?451 (1995).

    CAS  PubMed  Google Scholar 

  30. Mahmood, R. et al. A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol. 5, 797?806 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834?1846 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delaune, E., Lemaire, P. & Kodjabachian, L. Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299?310 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Wawersik, S., Evola, C. & Whitman, M. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction. Dev. Biol. 277, 425?442 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Aubin, J., Davy, A. & Soriano, P. In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev. 18, 1482?1494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B. & De Robertis, E. M. Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev. 19, 1022?1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pera, E. M., Ikeda, A., Eivers, E. & De Robertis, E. M. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev. 17, 3023?3028 (2003). This paper integrates FGF action with the inhibition of BMP signalling proposed by the default model of neural induction in Xenopus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Londin, E. R., Niemiec, J. & Sirotkin, H. I. Chordin, FGF signaling, and mesodermal factors cooperate in zebrafish neural induction. Dev. Biol. 279, 1?19 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kudoh, T., Wilson, S. W. & Dawid, I. B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129, 4335?4346 (2002).

    CAS  PubMed  Google Scholar 

  39. Kudoh, T., Concha, M. L., Houart, C., Dawid, I. B. & Wilson, S. W. Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development 131, 3581?3592 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Rentzsch, F., Bakkers, J., Kramer, C. & Hammerschmidt, M. Fgf signaling induces posterior neuroectoderm independently of Bmp signaling inhibition. Dev. Dyn. 231, 750?757 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Furthauer, M., Van Celst, J., Thisse, C. & Thisse, B. Fgf signalling controls the dorsoventral patterning of the zebrafish embryo. Development 131, 2853?2864 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bertrand, V., Hudson, C., Caillol, D., Popovici, C. & Lemaire, P. Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115, 615?627 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Matus, D. Q., Thomsen, G. H. & Martindale, M. Q. FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev. Genes Evol. 217, 137?148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Diez del Corral, R. & Storey, K. G. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 26, 857?869 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, J. P., Laufer, E. & Jessell, T. M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32, 997?1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Bel-Vialar, S., Itasaki, N. & Krumlauf, R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129, 5103?5115 (2002).

    CAS  PubMed  Google Scholar 

  47. Pownall, M. E., Isaacs, H. V. & Slack, J. M. Two phases of Hox gene regulation during early Xenopus development. Curr. Biol. 8, 673?676 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Dasen, J. S., Liu, J. P. & Jessell, T. M. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425, 926?933 (2003). References 45?48 demonstrate how FGF signalling determines the axial extent of Hox gene expression within the spinal cord, which ultimately serves to match motor neurons with their target muscles.

    Article  CAS  PubMed  Google Scholar 

  49. Echevarria, D., Vieira, C., Gimeno, L. & Martinez, S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res. Brain Res. Rev. 43, 179?191 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Zervas, M., Blaess, S. & Joyner, A. L. Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr. Top. Dev. Biol. 69, 101?138 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66?68 (1996). Landmark study that identified FGF8 signalling as the MHB signalling activity first seen in classical tissue grafting studies and which shows that it is capable of re-specifying forebrain to a midbrain fate. This work established FGFs as morphogens within the developing nervous system.

    Article  CAS  PubMed  Google Scholar 

  52. Chi, C. L., Martinez, S., Wurst, W. & Martin, G. R. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130, 2633?2644 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Meyers, E. N., Lewandoski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136?141 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain?hindbrain boundary development and somitogenesis. Development 125, 2381?2395 (1998).

    CAS  PubMed  Google Scholar 

  55. Sato, T. & Nakamura, H. The Fgf8 signal causes cerebellar differentiation by activating the Ras?ERK signaling pathway. Development 131, 4275?4285 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Scholpp, S., Lohs, C. & Brand, M. Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130, 4881?4893 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Irving, C. & Mason, I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127, 177?186 (2000). References 56 and 57 show that FGF8 from the MHB determines the spatial extent of adjacent brain segments, in addition to imparting their identity and polarity.

    CAS  PubMed  Google Scholar 

  58. Partanen, J. FGF signalling pathways in development of the midbrain and anterior hindbrain. J. Neurochem. 101, 1185?1193 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Hebert, J. M. Unraveling the molecular pathways that regulate early telencephalon development. Curr. Top. Dev. Biol. 69, 17?37 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Shanmugalingam, S. et al. Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127, 2549?2561 (2000).

    CAS  PubMed  Google Scholar 

  61. Walshe, J. & Mason, I. Unique and combinatorial functions of Fgf3 and Fgf8 during zebrafish forebrain development. Development 130, 4337?4349 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 83?93 (2002).

    CAS  PubMed  Google Scholar 

  63. Garel, S., Huffman, K. J. & Rubenstein, J. L. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130, 1903?1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Storm, E. E. et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133, 1831?1844 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Hebert, J. M., Lin, M., Partanen, J., Rossant, J. & McConnell, S. K. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 130, 1101?1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071?1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Gutin, G. et al. FGF signalling generates ventral telencephalic cells independently of SHH. Development 133, 2937?2946 (2006). A key study that shows that FGF signalling has ventralizing activity in the forebrain that is distinct from that of sonic hedgehog.

    Article  CAS  PubMed  Google Scholar 

  68. Cholfin, J. A. & Rubenstein, J. L. Patterning of frontal cortex subdivisions by Fgf17. Proc. Natl Acad. Sci. USA 104, 7652?7657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, J., Liu, Z. & Ornitz, D. M. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127, 1833?1843 (2000).

    CAS  PubMed  Google Scholar 

  70. Picker, A. & Brand, M. Fgf signals from a novel signaling center determine axial patterning of the prospective neural retina. Development 132, 4951?4962 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Lupo, G. et al. Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. Development 132, 1737?1748 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Maves, L., Jackman, W. & Kimmel, C. B. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129, 3825?3837 (2002).

    CAS  PubMed  Google Scholar 

  73. Walshe, J., Maroon, H., McGonnell, I. M., Dickson, C. & Mason, I. Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr. Biol. 12, 1117?1123. (2002). References 72 and 73 identify the central hindbrain segment rhombomere 4 as a novel organizer that patterns the developing hindbrain through FGF activity.

    Article  CAS  PubMed  Google Scholar 

  74. Hernandez, R. E., Rikhof, H. A., Bachmann, R. & Moens, C. B. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 131, 4511?4520 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Trumpp, A., Depew, M. J., Rubenstein, J. L. R., Bishop, J. M. & Martin, G. R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13, 3136?3148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Storm, E. E., Rubenstein, J. L. & Martin, G. R. Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc. Natl Acad. Sci. USA 100, 1757?1762 (2003). This study emphasizes the precise dosage requirement for FGF signalling in order for it to promote neural survival in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawauchi, S. et al. Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132, 5211?5223 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Grothe, C. & Wewetzer, K. Fibroblast growth factor and its implications for developing and regenerating neurons. Int. J. Dev. Biol. 40, 403?410 (1996).

    CAS  PubMed  Google Scholar 

  79. Ford-Perriss, M., Abud, H. & Murphy, M. Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol. 28, 493?503 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Timmer, M. et al. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J. Neurosci. 27, 459?471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tannahill, D., Harris, L. W. & Keynes, R. Role of morphogens in brain growth. J. Neurobiol. 64, 367?375 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Akai, J., Halley, P. A. & Storey, K. G. FGF-dependent Notch signaling maintains the spinal cord stem zone. Genes Dev. 19, 2877?2887 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Delfino-Machin, M., Lunn, J. S., Breitkreuz, D. N., Akai, J. & Storey, K. G. Specification and maintenance of the spinal cord stem zone. Development 132, 4273?4283 (2005). References 82 and 83 demonstrate the requirement for FGF signals in maintaining a stem-cell niche within the developing CNS.

    Article  CAS  PubMed  Google Scholar 

  84. Shamim, H. et al. Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945?959 (1999).

    CAS  PubMed  Google Scholar 

  85. Lee, S. M., Danielian, P. S., Fritzsch, B. & McMahon, A. P. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959?969 (1997).

    CAS  PubMed  Google Scholar 

  86. Liu, A. et al. FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 130, 6175?6185 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Ye, W., Shimamura, K., Rubenstein, J. R., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755?766 (1998). A key study that implicates FGF signals in neuronal fate choices, notably those of midbrain dopaminergic neurons. This study has proved influential in the directed differentiation of neural stem cells in vitro.

    Article  CAS  PubMed  Google Scholar 

  88. Jukkola, T., Lahti, L., Naserke, T., Wurst, W. & Partanen, J. FGF regulated gene-expression and neuronal differentiation in the developing midbrain-hindbrain region. Dev. Biol. 297, 141?157 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Martinez-Morales, J. R. et al. Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev. Cell 8, 565?574 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Esteve, P. & Bovolenta, P. Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr. Opin. Neurobiol. 16, 13?19 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Kessaris, N., Jamen, F., Rubin, L. L. & Richardson, W. D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289?1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Reuss, B., Dono, R. & Unsicker, K. Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood?brain barrier permeability: evidence from mouse mutants. J. Neurosci. 23, 6404?6412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Regad, T., Roth, M., Bredenkamp, N., Illing, N. & Papalopulu, N. The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nature Cell Biol. 9, 531?540 (2007). An exciting recent study that identifies a novel cellular mechanism through which FGF signals regulate neuronal differentiation.

    Article  CAS  PubMed  Google Scholar 

  94. Bailey, A. P. & Streit, A. Sensory organs: making and breaking the pre-placodal region. Curr. Top. Dev. Biol. 72, 167?204 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Begbie, J. & Graham, A. The ectodermal placodes: a dysfunctional family. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1655?1660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Litsiou, A., Hanson, S. & Streit, A. A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development 132, 4051?4062 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Bailey, A. P., Bhattacharyya, S., Bronner-Fraser, M. & Streit, A. Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Dev. Cell 11, 505?517 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Medina-Martinez, O. & Jamrich, M. Foxe view of lens development and disease. Development 134, 1455?1463 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Leger, S. & Brand, M. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning. Mech. Dev. 119, 91?108 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Maroon, H. et al. Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 129, 2099?2108 (2002).

    CAS  PubMed  Google Scholar 

  101. Phillips, B. T., Bolding, K. & Riley, B. B. Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev. Biol. 235, 351?365 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Phillips, B. T., Storch, E. M., Lekven, A. C. & Riley, B. B. A direct role for Fgf but not Wnt in otic placode induction. Development 131, 923?931 (2004). References 99?102 show that the same FGFs that pattern the hindbrain also induce the adjacent otic placode, thereby spatially and temporally coordinating the development of both brain and placode.

    Article  CAS  PubMed  Google Scholar 

  103. Ladher, R. K., Wright, T. J., Moon, A. M., Mansour, S. L. & Schoenwolf, G. C. FGF8 initiates inner ear induction in chick and mouse. Genes Dev. 19, 603?613 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Solomon, K. S., Kwak, S. J. & Fritz, A. Genetic interactions underlying otic placode induction and formation. Dev. Dyn. 230, 419?433 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Wright, T. J. & Mansour, S. L. Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130, 3379?3390 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Sun, S. K. et al. Epibranchial and otic placodes are induced by a common Fgf signal, but their subsequent development is independent. Dev. Biol. 303, 675?686 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Nechiporuk, A., Linbo, T., Poss, K. D. & Raible, D. W. Specification of epibranchial placodes in zebrafish. Development 134, 611?623 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Nikaido, M. et al. Initial specification of the epibranchial placode in zebrafish embryos depends on the fibroblast growth factor signal. Dev. Dyn. 236, 564?571 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 2403?2414 (1998).

    CAS  PubMed  Google Scholar 

  110. Mayor, R., Guerrero, N. & Martinez, C. Role of FGF and noggin in neural crest induction. Dev. Biol. 189, 1?12 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Monsoro-Burq, A. H., Fletcher, R. B. & Harland, R. M. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, 3111?3124 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Trainor, P. A., Ariza-McNaughton, L. & Krumlauf, R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295, 1288?1291 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Walshe, J. & Mason, I. Fgf signalling is required for formation of cartilage in the head. Dev. Biol. 264, 522?536 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. David, N. B., Saint-Etienne, L., Tsang, M., Schilling, T. F. & Rosa, F. M. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development 129, 4457?4468 (2002).

    CAS  PubMed  Google Scholar 

  115. Crump, J. G., Maves, L., Lawson, N. D., Weinstein, B. M. & Kimmel, C. B. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development 131, 5703?5716 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K.-i. & Meyers, E. N. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129, 4613?4625 (2002).

    CAS  PubMed  Google Scholar 

  117. Frank, D. U. et al. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129, 4591?4603 (2002).

    CAS  PubMed  Google Scholar 

  118. Trumpp, A., Depew, M. J., Rubenstein, J. L., Bishop, J. M. & Martin, G. R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13, 3136?3148 (1999). References 116?118 establish a clear link between FGF activity in developing pharyngeal arches and human 22q11 and DiGeorge syndromes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Trokovic, N., Trokovic, R., Mai, P. & Partanen, J. Fgfr1 regulates patterning of the pharyngeal region. Genes Dev. 17, 141?153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bovolenta, P. Morphogen signalling at the growth cone: a few cases or a general strategy? J. Neurobiol. 64, 405?416 (2005).

    Article  PubMed  Google Scholar 

  121. McFarlane, S., Cornel, E., Amaya, E. & Holt, C. E. Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. Neuron 17, 245?254 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Webber, C. A., Chen, Y. Y., Hehr, C. L., Johnston, J. & McFarlane, S. Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol. Cell Neurosci. 30, 37?47 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Webber, C. A., Hyakutake, M. T. & McFarlane, S. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev. Biol. 263, 24?34 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Dingwell, K. S., Holt, C. E. & Harris, W. A. The multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum in Xenopus embryos. J. Neurobiol. 44, 246?259 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Irving, C., Malhas, A., Guthrie, S. & Mason, I. Establishing the trochlear motor axon trajectory: role of the isthmic organiser and Fgf8. Development 129, 5389?5398 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Shirasaki, R., Lewcock, J. W., Lettieri, K. & Pfaff, S. L. FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50, 841?853 (2006). References 125 and 126 show that FGFs have chemotropic activity during axon pathfinding.

    Article  CAS  PubMed  Google Scholar 

  127. Garcia-Alonso, L., Romani, S. & Jimenez, F. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila. Neuron 28, 741?752 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Fleming, T. C., Wolf, F. W. & Garriga, G. Sensitized genetic backgrounds reveal a role for C. elegans FGF EGL-17 as a repellent for migrating CAN neurons. Development 132, 4857?4867 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Srahna, M. et al. A signaling network for patterning of neuronal connectivity in the Drosophila brain. PLoS Biol. 10 Oct 2006 (doi:10.1371/journal.pbio.0040348).

  130. Lee, J. S. & Chien, C. B. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nature Rev. Genet. 5, 923?935 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Van Vactor, D., Wall, D. P. & Johnson, K. G. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr. Opin. Neurobiol. 16, 40?51 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Irie, A., Yates, E. A., Turnbull, J. E. & Holt, C. E. Specific heparan sulfate structures involved in retinal axon targeting. Development 129, 61?70 (2002).

    CAS  PubMed  Google Scholar 

  133. Walz, A. et al. Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124, 2421?2430 (1997).

    CAS  PubMed  Google Scholar 

  134. Huffman, K. J., Garel, S. & Rubenstein, J. L. Fgf8 regulates the development of intra-neocortical projections. J. Neurosci. 24, 8917?8923 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barresi, M. J., Hutson, L. D., Chien, C. B. & Karlstrom, R. O. Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain. Development 132, 3643?3656 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Tole, S., Gutin, G., Bhatnagar, L., Remedios, R. & Hebert, J. M. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev. Biol. 289, 141?151 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Smith, K. M. et al. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neurosci. 9, 787?797 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Akins, M. R. & Biederer, T. Cell?cell interactions in synaptogenesis. Curr. Opin. Neurobiol. 16, 83?89 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Dai, Z. & Peng, H. B. Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis. Mol. Cell Neurosci. 7, 443?452 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Dai, Z. & Peng, H. B. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J. Neurosci. 15, 5466?5475 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, A. J., Suzuki, S., Suzuki, M., Mizukoshi, E. & Imamura, T. Fibroblast growth factor-2 increases functional excitatory synapses on hippocampal neurons. Eur. J. Neurosci. 16, 1313?1324 (2002).

    Article  PubMed  Google Scholar 

  142. Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257?270 (2004). Definitive study demonstrating a role for FGF signalling in organizing the developing synapse.

    Article  CAS  PubMed  Google Scholar 

  143. Fox, M. A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179?193 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Kim, M. J., Cotman, S. L., Halfter, W. & Cole, G. J. The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. J. Neurobiol. 55, 261?277 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Cadman, S. M., Kim, S. H., Hu, Y., Gonzalez-Martinez, D. & Bouloux, P. M. Molecular pathogenesis of Kallmann's syndrome. Horm. Res. 67, 231?242 (2007).

    CAS  PubMed  Google Scholar 

  146. Reuss, B. & von Bohlen und Halbach, O. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res. 313, 139?157 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Riva, M. A., Molteni, R., Bedogni, F., Racagni, G. & Fumagalli, F. Emerging role of the FGF system in psychiatric disorders. Trends Pharmacol. Sci. 26, 228?231 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Dode, C. & Hardelin, J. P. Kallmann syndrome: fibroblast growth factor signaling insufficiency? J. Mol. Med. 82, 725?734 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Cariboni, A. & Maggi, R. Kallmann's syndrome, a neuronal migration defect. Cell Mol. Life Sci. 63, 2512?2526 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Dode, C. et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nature Genet. 33, 463?465 (2003). First demonstration of involvement of impaired FGFR function in a human developmental brain lesion.

    Article  CAS  PubMed  Google Scholar 

  151. Tsai, P. S. & Gill, J. C. Mechanisms of disease: insights into X-linked and autosomal-dominant Kallmann syndrome. Nature Clin. Pract. Endocrinol. Metab. 2, 160?171 (2006).

    Article  CAS  Google Scholar 

  152. Pitteloud, N. et al. Reversible Kallmann syndrome, delayed puberty, and isolated anosmia occurring in a single family with a mutation in the fibroblast growth factor receptor 1 gene. J. Clin. Endocrinol. Metab. 90, 1317?1322 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Whitlock, K. E., Smith, K. M., Kim, H. & Harden, M. V. A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio. Development 132, 5491?5502 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Tsai, P. S. et al. Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol. Endocrinol. 19, 225?236 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Gill, J. C. & Tsai, P. S. Expression of a dominant negative FGF receptor in developing GNRH1 neurons disrupts axon outgrowth and targeting to the median eminence. Biol. Reprod. 74, 463?472 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. van der Walt, J. M. et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am. J. Hum. Genet. 74, 1121?1127 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Clarimon, J. et al. Lack of evidence for a genetic association between FGF20 and Parkinson's disease in Finnish and Greek patients. BMC Neurol. 20 Jun 2005 (doi:10.1186/1471-2377-5-11).

  158. Grothe, C. & Timmer, M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res. Rev. 16 Jan 2007 (doi:10.1016/j.brainresrev.2006.12.001).

  159. Klejbor, I. et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons ? inhibition results in a schizophrenia-like syndrome in transgenic mice. J. Neurochem. 97, 1243?1258 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Zheng, W., Nowakowski, R. S. & Vaccarino, F. M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 26, 181?196 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Ohkubo, Y., Uchida, A. O., Shin, D., Partanen, J. & Vaccarino, F. M. Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J. Neurosci. 24, 6057?6069 (2004). Together with references 77, 82, 83 and 160, this paper is indicative of a general role for FGFs in maintaining neural stem cell niches in both embryo and adult.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pieper, A. A. et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc. Natl Acad. Sci. USA 102, 14052?14057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lowell, S., Benchoua, A., Heavey, B. & Smith, A. G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol. 11 Apr 2006 (doi:10.1371/journal.pbio.0040121).

  164. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnol. 21, 183?186 (2003).

    Article  CAS  Google Scholar 

  165. Salero, E. & Hatten, M. E. Differentiation of ES cells into cerebellar neurons. Proc. Natl Acad. Sci. USA 104, 2997?3002 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fu, Y. S. et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24, 115?124 (2006).

    Article  PubMed  Google Scholar 

  167. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol. 18, 675?679 (2000).

    Article  CAS  Google Scholar 

  168. Vaccarino, F. M. et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neurosci. 2, 246?253 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Israsena, N., Hu, M., Fu, W., Kan, L. & Kessler, J. A. The presence of FGF2 signaling determines whether β-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev. Biol. 268, 220?231 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Yoon, K. et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497?9506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lukaszewicz, A., Savatier, P., Cortay, V., Kennedy, H. & Dehay, C. Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci. 22, 6610?6622 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wilcock, A. C., Swedlow, J. R. & Storey, K. G. Mitotic spindle orientation distinguishes stem cell and terminal modes of neuron production in the early spinal cord. Development 134, 1943?1954 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Zhao, M. et al. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol. Psychiatry 18 Jan 2007 (doi:10.1016/j.biopsych.2006.10.019).

  174. Maric, D., Fiorio Pla, A., Chang, Y. H. & Barker, J. L. Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J. Neurosci. 27, 1836?1852 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mason, I. Fibroblast growth factors. Curr. Biol. 1 May 2003 (doi:10.1016/S0960-9822(03)00270-7).

  176. Knecht, A. K. & Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nature Rev. Genet. 3, 453?461 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to my many colleagues whose work could not be included or cited directly due to a combination of the large scope of this Review and constraints of space. I would like to thank S. Cadman, A. Graham, C. Holt, J. Sanes and C. Stern for their insightful comments on individual sections of the manuscript, and give particular thanks to G. Fishell and K. Storey for commenting on the entire manuscript and to J. Sanes and K. Storey for providing data prior to publication. Work in my laboratory is funded by the Medical Research Council, the Wellcome Trust and Wyeth, and I was in receipt of a Fellowship from the Leverhulme Trust, which greatly facilitated the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

KAL2

Parkinson's disease

FURTHER INFORMATION

Ivor Mason's homepage

Glossary

Neural induction

The process by which signalling from an adjacent tissue specifies part of the embryonic ectoderm to form the neural plate.

Alternative splicing

Allows the production of different messenger RNAs from a single gene through the differential incorporation of exons into the mature transcript during splicing. Various mature proteins are frequently generated from a single gene.

Signal peptide

A short, generally amino-terminal, sequence that directs newly synthesized secretory or transmembrane proteins to and through the membranes of the endoplasmic reticulum.

Adaptor protein

An accessory to the main signalling proteins in a signal transduction pathway. Adaptor proteins tend to lack any intrinsic enzymatic activity themselves, but instead mediate the specific protein?protein interactions that drive the formation of protein complexes. Examples in FGF signalling include Shc and Grb2.

Hensen's node

The avian equivalent of the Spemann organizer, located at the anterior of the primitive streak (through which gastrulation occurs).

Spemann organizer

A signalling centre located on the dorsal side of an amphibian embryo that is capable of inducing new antero?posterior and dorso?ventral axes. The neural plate is one of the tissues it can induce from nearby cells. The concept of neural induction resulted from its discovery.

Neural plate

A continuous sheet of neural epithelial cells that forms after neural induction and gives rise to the central nervous system and the neural crest.

Organizer

A signalling centre that directs the development of all or part of the embryo and is capable of instructing several fate choices in nearby cells.

Shield

The zebrafish equivalent of the Spemann organizer, located, as in amphibians, on the dorsal side of the gastrulating embryo.

Motor neuron pool

A generally spindle-shaped and continuous group of motor neurons that are located at a specific position within the spinal cord or hindbrain. They innervate a single, identified muscle.

Hypomorphic mouse

A mouse that expresses less than the normal level of protein from a particular gene.

Neurotrophic factor

A factor, usually a protein, which is secreted by target tissues (for example, muscle, glial cells and across synapses) and which promotes neuronal survival.

Mitogen

An agent that induces mitosis, usually resulting in subsequent cell division.

Commissure

A tract of nerve fibres that passes from one side of the CNS to the other.

Active zone

A portion of the presynaptic membrane that faces the postsynaptic density across the synaptic cleft. It constitutes the site of synaptic vesicle clustering, docking and neurotransmitter release.

Hypogonadotropic hypogonadism

The absent or decreased function of the gonads, resulting from the absence of gonadotrophin releasing hormone, follicle stimulating hormone and luteinizing hormone.

Haploinsufficiency

A situation in which the loss of one copy (one allele) of a gene is sufficient to give rise to disease. Haploinsufficiency implies that no dominant-negative effect of the mutated gene product has to be invoked.

Synkinesia

The involuntary movement of muscles or limbs which accompanies a voluntary movement and sometimes results in identical bilateral movements called mirror movements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8, 583–596 (2007). https://doi.org/10.1038/nrn2189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing