Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central mechanisms of odour object perception

Key Points

  • An object can be defined as a 'thing' that is presented to the senses. Thus, an odour object can be defined as a smell that is presented to the olfactory sense. Although the visual and olfactory systems have evolved under different ecological pressures, many of the basic principles underlying visual object perception hold for olfactory object perception.

  • Studies in which olfactory behavioural states and brain activity are monitored simultaneously in the same animal offer a direct way to relate odour object percepts to their underlying cortical signatures. These approaches, in combination with high-resolution functional MRI and multivariate statistical analysis, have advanced our understanding of odour object perception.

  • The human piriform cortex is situated at the junction of the frontal and temporal lobes and is the main recipient of afferent sensory input from the olfactory bulb. Its unique anatomy, physiology and connectivity suggest that this brain region is well-suited for encoding odour objects.

  • Recent data indicate that the piriform cortex is involved in key elements of odour object perception, including feature synthesis, figure–ground segregation, perceptual categorization and discrimination, and attentional selection. The chemical identity of an odour stimulus is encoded in the anterior piriform cortex, whereas the integrated perceptual representation of an odour object is encoded in posterior piriform cortex.

  • Categorical percepts of odour objects take the form of spatially dispersed patterns across the piriform cortex in the apparent absence of localized clusters of activity. These distributed ensemble representations may be crucial for the olfactory brain to execute content-addressable memory and pattern completion, in which object-specific patterns can be fully reconstituted from degraded or noisy odour inputs, helping to achieve perceptual constancy.

  • The principal neocortical projection area of the piriform cortex is the orbitofrontal cortex, which itself sends return projections to the piriform cortex. A plausible hypothesis of olfactory orbitofrontal function is that it provides a top-down signal that helps to resolve odour object representations in the piriform cortex, particularly under conditions of high stimulus uncertainty.

Abstract

The stimulus complexity of naturally occurring odours presents unique challenges for central nervous systems that are aiming to internalize the external olfactory landscape. One mechanism by which the brain encodes perceptual representations of behaviourally relevant smells is through the synthesis of different olfactory inputs into a unified perceptual experience — an odour object. Recent evidence indicates that the identification, categorization and discrimination of olfactory stimuli rely on the formation and modulation of odour objects in the piriform cortex. Convergent findings from human and rodent models suggest that distributed piriform ensemble patterns of olfactory qualities and categories are crucial for maintaining the perceptual constancy of ecologically inconstant stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the human olfactory brain.
Figure 2: Odorant feature synthesis.
Figure 3: Odour-background segmentation.
Figure 4: Constancy and categorization of objects.
Figure 5: Odour object discrimination.
Figure 6: Olfactory attentional selection.

Similar content being viewed by others

References

  1. Aristotle. On Sense and the Sensible. The Internet Classics Archive [online], (350 BC).

  2. Gross, C. G. Representation of visual stimuli in inferior temporal cortex. Phil. Trans. R. Soc. Lond. B 335, 3–10 (1992).

    CAS  Google Scholar 

  3. Ungerleider, L. G. & Haxby, J. V. 'What' and 'where' in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    CAS  PubMed  Google Scholar 

  4. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996).

    CAS  PubMed  Google Scholar 

  5. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    CAS  PubMed  Google Scholar 

  6. Wallis, G. & Rolls, E. T. Invariant face and object recognition in the visual system. Prog. Neurobiol. 51, 167–194 (1997).

    CAS  PubMed  Google Scholar 

  7. Treisman, A. M. & Kanwisher, N. G. Perceiving visually presented objects: recognition, awareness, and modularity. Curr. Opin. Neurobiol. 8, 218–226 (1998).

    CAS  PubMed  Google Scholar 

  8. Riesenhuber, M. & Poggio, T. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12, 162–168 (2002).

    CAS  PubMed  Google Scholar 

  9. Palmeri, T. J. & Gauthier, I. Visual object understanding. Nature Rev. Neurosci. 5, 291–303 (2004).

    CAS  Google Scholar 

  10. Freedman, D. J. & Miller, E. K. Neural mechanisms of visual categorization: insights from neurophysiology. Neurosci. Biobehav. Rev. 32, 311–329 (2008).

    PubMed  Google Scholar 

  11. Kubovy, M. & Van Valkenburg, D. Auditory and visual objects. Cognition 80, 97–126 (2001).

    CAS  PubMed  Google Scholar 

  12. Griffiths, T. D. & Warren, J. D. What is an auditory object? Nature Rev. Neurosci. 5, 887–892 (2004).

    CAS  Google Scholar 

  13. Dubois, D. Categories as acts of meaning: the case of categories in olfaction and audition. Cogn. Sci. Quart. 1, 35–68 (2000).

    Google Scholar 

  14. Stevenson, R. J. & Wilson, D. A. Odour perception: an object-recognition approach. Perception 36, 1821–1833 (2007). Drawing from psychological studies in humans and electrophysiological studies in rodents, this review provides a thoughtful account of odour object perception.

    PubMed  Google Scholar 

  15. Maplet, J. A greene forest or a naturall historie, wherein may be seene first the most sufferaigne vertues in all the whole kinde of stones and metals: next of plantes, as of herbes, trees, and shrubs, lastly of brute beastes, foules, fishes, creeping wormes, and serpents, and that alphabetically: so that a table shall not neede (H. Denham, London, 1567).

    Google Scholar 

  16. Johnson, B. A. & Leon, M. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503, 1–34 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson, R. I. Neural and behavioral mechanisms of olfactory perception. Curr. Opin. Neurobiol. 18, 408–412 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kay, L. M. et al. Olfactory oscillations: the what, how and what for. Trends Neurosci. 32, 207–214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Linster, C. & Cleland, T. A. Glomerular microcircuits in the olfactory bulb. Neural Netw. 22, 1169–1173 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Restrepo, D., Doucette, W., Whitesell, J. D., McTavish, T. S. & Salcedo, E. From the top down: flexible reading of a fragmented odor map. Trends Neurosci. 32, 525–531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Strowbridge, B. W. Role of cortical feedback in regulating inhibitory microcircuits. Ann. NY Acad. Sci. 1170, 270–274 (2009).

    CAS  PubMed  Google Scholar 

  22. Su, C. Y., Menuz, K. & Carlson, J. R. Olfactory perception: receptors, cells, and circuits. Cell 139, 45–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Urban, N. N. & Arevian, A. C. Computing with dendrodendritic synapses in the olfactory bulb. Ann. NY Acad. Sci. 1170, 264–269 (2009).

    PubMed  Google Scholar 

  24. Zou, D. J., Chesler, A. & Firestein, S. How the olfactory bulb got its glomeruli: a just so story? Nature Rev. Neurosci. 10, 611–618 (2009).

    CAS  Google Scholar 

  25. Cleland, T. A. Early transformations in odor representation. Trends Neurosci. 33, 130–139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Isaacson, J. S. Odor representations in mammalian cortical circuits. Curr. Opin. Neurobiol. 5 Mar 2010 (doi:10.1016/j.conb.2010.02.004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kay, L. M., Crk, T. & Thorngate, J. A redefinition of odor mixture quality. Behav. Neurosci. 119, 726–733 (2005).

    CAS  PubMed  Google Scholar 

  28. Laing, D. G. & Francis, G. W. The capacity of humans to identify odors in mixtures. Physiol. Behav. 46, 809–814 (1989).

    CAS  PubMed  Google Scholar 

  29. Livermore, A. & Laing, D. G. Influence of training and experience on the perception of multicomponent odor mixtures. J. Exp. Psychol. Hum. Percept. Perform. 22, 267–277 (1996).

    CAS  PubMed  Google Scholar 

  30. de Olmos, J., Hardy, H. & Heimer, L. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J. Comp. Neurol. 181, 213–244 (1978).

    CAS  PubMed  Google Scholar 

  31. Carmichael, S. T., Clugnet, M. C. & Price, J. L. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346, 403–434 (1994). A tour de force study combining anatomical tracers and electrophysiological recordings to delineate olfactory connectivity in primate olfactory cortex.

    CAS  PubMed  Google Scholar 

  32. Shipley, M. T. & Ennis, M. Functional organization of olfactory system. J. Neurobiol. 30, 123–176 (1996).

    CAS  PubMed  Google Scholar 

  33. Haberly, L. B. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 377–416 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  34. Johnson, D. M., Illig, K. R., Behan, M. & Haberly, L. B. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J. Neurosci. 20, 6974–6982 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cleland, T. A., Linster, C. & Doty, R. L. in Handbook of Olfaction and Gustation (ed. Doty, R. L.) 165–180 (Marcel Dekker, New York, 2003).

    Google Scholar 

  36. Wilson, D. A., Sullivan, R. M. & Doty, R. L. in Handbook of Olfaction and Gustation (ed. Doty, R. L.) 181–201 (Marcel Dekker, New York, 2003).

    Google Scholar 

  37. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    PubMed  Google Scholar 

  38. Stevenson, R. J. An initial evaluation of the functions of human olfaction. Chem. Senses 35, 3–20 (2010).

    PubMed  Google Scholar 

  39. Haberly, L. B. & Price, J. L. Association and commissural fiber systems of the olfactory cortex of the rat. J. Comp. Neurol. 178, 711–740 (1978).

    CAS  PubMed  Google Scholar 

  40. Kay, L. M. & Freeman, W. J. Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav. Neurosci. 112, 541–553 (1998).

    CAS  PubMed  Google Scholar 

  41. Haberly, L. B. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26, 551–576 (2001).

    CAS  PubMed  Google Scholar 

  42. Chen, S., Murakami, K., Oda, S. & Kishi, K. Quantitative analysis of axon collaterals of single cells in layer III of the piriform cortex of the guinea pig. J. Comp. Neurol. 465, 455–465 (2003).

    PubMed  Google Scholar 

  43. O'Doherty, J. et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11, 893–897 (2000).

    CAS  PubMed  Google Scholar 

  44. Dade, L. A., Zatorre, R. J. & Jones-Gotman, M. Olfactory learning: convergent findings from lesion and brain imaging studies in humans. Brain 125, 86–101 (2002).

    PubMed  Google Scholar 

  45. Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J. Neurosci. 22, 10829–10837 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    CAS  PubMed  Google Scholar 

  47. Gottfried, J. A., Smith, A. P., Rugg, M. D. & Dolan, R. J. Remembrance of odors past: human olfactory cortex in cross-modal recognition memory. Neuron 42, 687–695 (2004).

    CAS  PubMed  Google Scholar 

  48. Zelano, C. et al. Attentional modulation in human primary olfactory cortex. Nature Neurosci. 8, 114–120 (2005).

    CAS  PubMed  Google Scholar 

  49. Cerf-Ducastel, B. & Murphy, C. Neural substrates of cross-modal olfactory recognition memory: an fMRI study. Neuroimage 31, 386–396 (2006).

    PubMed  Google Scholar 

  50. Plailly, J., Howard, J. D., Gitelman, D. R. & Gottfried, J. A. Attention to odor modulates thalamocortical connectivity in the human brain. J. Neurosci. 28, 5257–5267 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Small, D. M., Veldhuizen, M. G., Felsted, J., Mak, Y. E. & McGlone, F. Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57, 786–797 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zelano, C., Montag, J., Khan, R. & Sobel, N. A specialized odor memory buffer in primary olfactory cortex. PLoS ONE 4, e4965 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Henkin, R. I., Comiter, H., Fedio, P. & O'Doherty, D. Defects in taste and smell recognition following temporal lobectomy. Trans. Am. Neurol. Assoc. 102, 146–150 (1977).

    CAS  PubMed  Google Scholar 

  54. Abraham, A. & Mathai, K. V. The effect of right temporal lobe lesions on matching of smells. Neuropsychologia 21, 277–281 (1983).

    CAS  PubMed  Google Scholar 

  55. Eskenazi, B., Cain, W. S., Novelly, R. A. & Friend, K. B. Olfactory functioning in temporal lobectomy patients. Neuropsychologia 21, 365–374 (1983).

    CAS  PubMed  Google Scholar 

  56. Jones-Gotman, M. & Zatorre, R. J. Olfactory identification deficits in patients with focal cerebral excision. Neuropsychologia 26, 387–400 (1988).

    CAS  PubMed  Google Scholar 

  57. Martinez, B. A. et al. Olfactory functioning before and after temporal lobe resection for intractable seizures. Neuropsychology 7, 351–363 (1993).

    Google Scholar 

  58. West, S. E. & Doty, R. L. Influence of epilepsy and temporal lobe resection on olfactory function. Epilepsia 36, 531–542 (1995).

    CAS  PubMed  Google Scholar 

  59. Eichenbaum, H., Shedlack, K. J. & Eckmann, K. W. Thalamocortical mechanisms in odor-guided behavior. I. Effects of lesions of the mediodorsal thalamic nucleus and frontal cortex on olfactory discrimination in the rat. Brain Behav. Evol. 17, 255–275 (1980).

    CAS  PubMed  Google Scholar 

  60. Litaudon, P., Mouly, A. M., Sullivan, R., Gervais, R. & Cattarelli, M. Learning-induced changes in rat piriform cortex activity mapped using multisite recording with voltage sensitive dye. Eur. J. Neurosci. 9, 1593–1602 (1997).

    CAS  PubMed  Google Scholar 

  61. Chabaud, P. et al. Exposure to behaviourally relevant odour reveals differential characteristics in rat central olfactory pathways as studied through oscillatory activities. Chem. Senses 25, 561–573 (2000).

    CAS  PubMed  Google Scholar 

  62. Mouly, A. M., Fort, A., Ben-Boutayab, N. & Gervais, R. Olfactory learning induces differential long-lasting changes in rat central olfactory pathways. Neuroscience 102, 11–21 (2001).

    CAS  PubMed  Google Scholar 

  63. Gottfried, J. A., Deichmann, R., Winston, J. S. & Dolan, R. J. Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J. Neurosci. 22, 10819–10828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Litaudon, P., Amat, C., Bertrand, B., Vigouroux, M. & Buonviso, N. Piriform cortex functional heterogeneity revealed by cellular responses to odours. Eur. J. Neurosci. 17, 2457–2461 (2003).

    CAS  PubMed  Google Scholar 

  65. Martin, C., Gervais, R., Chabaud, P., Messaoudi, B. & Ravel, N. Learning-induced modulation of oscillatory activities in the mammalian olfactory system: the role of the centrifugal fibres. J. Physiol. (Paris) 98, 467–478 (2004).

    Google Scholar 

  66. Calu, D. J., Roesch, M. R., Stalnaker, T. A. & Schoenbaum, G. Associative encoding in posterior piriform cortex during odor discrimination and reversal learning. Cereb. Cortex 17, 1342–1349 (2007). This article and those cited in references 67 and 97 represent the small handful of rodent studies that have provided methodical comparisons between odor-related single-unit responses in the piriform cortex and the orbitofrontal cortex.

    PubMed  Google Scholar 

  67. Roesch, M. R., Stalnaker, T. A. & Schoenbaum, G. Associative encoding in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning. Cereb. Cortex 17, 643–652 (2007).

    PubMed  Google Scholar 

  68. Sharp, F. R., Kauer, J. S. & Shepherd, G. M. Laminar analysis of 2-deoxyglucose uptake in olfactory bulb and olfactory cortex of rabbit and rat. J. Neurophysiol. 40, 800–813 (1977).

    CAS  PubMed  Google Scholar 

  69. Astic, L. & Cattarelli, M. Metabolic mapping of functional activity in the rat olfactory system after a bilateral transection of the lateral olfactory tract. Brain Res. 245, 17–25 (1982).

    CAS  PubMed  Google Scholar 

  70. Cattarelli, M., Astic, L. & Kauer, J. S. Metabolic mapping of 2-deoxyglucose uptake in the rat piriform cortex using computerized image processing. Brain Res. 442, 180–184 (1988).

    CAS  PubMed  Google Scholar 

  71. Illig, K. R. & Haberly, L. B. Odor-evoked activity is spatially distributed in piriform cortex. J. Comp. Neurol. 457, 361–373 (2003).

    PubMed  Google Scholar 

  72. Mori, K., Takahashi, Y. K., Igarashi, K. M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    CAS  PubMed  Google Scholar 

  73. Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N. & Meister, M. Precision and diversity in an odor map on the olfactory bulb. Nature Neurosci. 12, 210–220 (2009). A comprehensive imaging investigation of odorant-evoked sensory tuning in rodent olfactory bulb that challenges the longstanding dogma that there is a tight systematic relationship between glomerular position and odorant chemical features.

    CAS  PubMed  Google Scholar 

  74. Sugai, T., Miyazawa, T., Fukuda, M., Yoshimura, H. & Onoda, N. Odor-concentration coding in the guinea-pig piriform cortex. Neuroscience 130, 769–781 (2005).

    CAS  PubMed  Google Scholar 

  75. Luna, V. M. & Pettit, D. L. Asymmetric rostro-caudal inhibition in the primary olfactory cortex. Nature Neurosci. 13, 533–535 (2010).

    CAS  PubMed  Google Scholar 

  76. Franks, K. M. & Isaacson, J. S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363 (2006).

    CAS  PubMed  Google Scholar 

  77. Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Luna, V. M. & Schoppa, N. E. GABAergic circuits control input-spike coupling in the piriform cortex. J. Neurosci. 28, 8851–8859 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rennaker, R. L., Chen, C. F., Ruyle, A. M., Sloan, A. M. & Wilson, D. A. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J. Neurosci. 27, 1534–1542 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009). Results from this in vivo optical imaging study indicate that odorant-related response patterns are spatially distributed and overlapping across neuronal ensembles in the mouse piriform cortex. These findings complement well the human data in reference 137.

    CAS  PubMed  Google Scholar 

  81. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    CAS  PubMed  Google Scholar 

  82. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    CAS  PubMed  Google Scholar 

  84. Kay, L. M. & Sherman, S. M. An argument for an olfactory thalamus. Trends Neurosci. 30, 47–53 (2007).

    CAS  PubMed  Google Scholar 

  85. Shepherd, G. M. Perspectives on olfactory processing, conscious perception, and orbitofrontal cortex. Ann. NY Acad. Sci. 1121, 87–101 (2007).

    PubMed  Google Scholar 

  86. Sherman, S. M. & Guillery, R. W. The role of the thalamus in the flow of information to the cortex. Phil. Trans. R. Soc. Lond. B 357, 1695–1708 (2002).

    Google Scholar 

  87. Jones, E. G. The Thalamus (Cambridge Univ. Press, Cambridge, UK, 2006).

    Google Scholar 

  88. Kastner, S., Schneider, K. A. & Wunderlich, K. Beyond a relay nucleus: neuroimaging views on the human LGN. Prog. Brain Res. 155, 125–143 (2006).

    PubMed  Google Scholar 

  89. Yarita, H., Iino, M., Tanabe, T., Kogure, S. & Takagi, S. F. A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J. Neurophysiol. 43, 69–85 (1980).

    CAS  PubMed  Google Scholar 

  90. Price, J. L. & Slotnick, B. M. Dual olfactory representation in the rat thalamus: an anatomical and electrophysiological study. J. Comp. Neurol. 215, 63–77 (1983).

    CAS  PubMed  Google Scholar 

  91. Zelano, C., Montag, J., Johnson, B., Khan, R. & Sobel, N. Dissociated representations of irritation and valence in human primary olfactory cortex. J. Neurophysiol. 97, 1969–1976 (2007).

    CAS  PubMed  Google Scholar 

  92. Sela, L. et al. Spared and impaired olfactory abilities after thalamic lesions. J. Neurosci. 29, 12059–12069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tham, W. W., Stevenson, R. J. & Miller, L. A. The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res. Rev. 62, 109–126 (2009).

    PubMed  Google Scholar 

  94. Jerison, H. J. in Development of the Prefrontal Cortex: Evolution, Neurobiology, and Behavior (eds Krasnegor, N. A., Lyon, G. R. & Goldman-Rakic, P. S.) 27–47 (Paul, H. Brookes, Baltimore, Maryland, 1997).

    Google Scholar 

  95. Gottfried, J. A. What can an orbitofrontal cortex-endowed animal do with smells. Ann. NY Acad. Sci. 1121, 102–120 (2007).

    PubMed  Google Scholar 

  96. Tanabe, T., Iino, M. & Takagi, S. F. Discrimination of odors in olfactory bulb, pyriform-amygdaloid areas, and orbitofrontal cortex of the monkey. J. Neurophysiol. 38, 1284–1296 (1975).

    CAS  PubMed  Google Scholar 

  97. Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74, 733–750 (1995).

    CAS  PubMed  Google Scholar 

  98. Critchley, H. D. & Rolls, E. T. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J. Neurophysiol. 75, 1659–1672 (1996).

    CAS  PubMed  Google Scholar 

  99. Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).

    CAS  PubMed  Google Scholar 

  100. Rolls, E. T. & Baylis, L. L. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 14, 5437–5452 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Small, D. M., Jones-Gotman, M., Zatorre, R. J., Petrides, M. & Evans, A. C. Flavor processing: more than the sum of its parts. Neuroreport 8, 3913–3917 (1997).

    CAS  PubMed  Google Scholar 

  102. Royet, J. P. et al. Functional anatomy of perceptual and semantic processing for odors. J. Cogn. Neurosci. 11, 94–109 (1999).

    CAS  PubMed  Google Scholar 

  103. Savic, I., Gulyas, B., Larsson, M. & Roland, P. Olfactory functions are mediated by parallel and hierarchical processing. Neuron 26, 735–745 (2000).

    CAS  PubMed  Google Scholar 

  104. Anderson, A. K. et al. Dissociated neural representations of intensity and valence in human olfaction. Nature Neurosci. 6, 196–202 (2003).

    CAS  PubMed  Google Scholar 

  105. De Araujo, I. E., Rolls, E. T., Kringelbach, M. L., McGlone, F. & Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18, 2059–2068 (2003).

    PubMed  Google Scholar 

  106. Gottfried, J. A. & Dolan, R. J. The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39, 375–386 (2003).

    CAS  PubMed  Google Scholar 

  107. Gottfried, J. A. & Dolan, R. J. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nature Neurosci. 7, 1144–1152 (2004).

    CAS  PubMed  Google Scholar 

  108. Small, D. M. et al. Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol. 92, 1892–1903 (2004).

    PubMed  Google Scholar 

  109. Osterbauer, R. A. et al. Color of scents: chromatic stimuli modulate odor responses in the human brain. J. Neurophysiol. 93, 3434–3441 (2005).

    PubMed  Google Scholar 

  110. Boyle, J. A., Frasnelli, J., Gerber, J., Heinke, M. & Hummel, T. Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study. Neuroscience 149, 223–231 (2007).

    CAS  PubMed  Google Scholar 

  111. Potter, H. & Butters, N. An assessment of olfactory deficits in patients with damage to prefrontal cortex. Neuropsychologia 18, 621–628 (1980).

    CAS  PubMed  Google Scholar 

  112. Zatorre, R. J. & Jones-Gotman, M. Human olfactory discrimination after unilateral frontal or temporal lobectomy. Brain 114, 71–84 (1991).

    PubMed  Google Scholar 

  113. Jones-Gotman, M. & Zatorre, R. J. Odor recognition memory in humans: role of right temporal and orbitofrontal regions. Brain Cogn. 22, 182–198 (1993).

    CAS  PubMed  Google Scholar 

  114. Li, W. et al. Right orbitofrontal cortex mediates conscious olfactory perception. Psychol. Sci. (in the press).

  115. Stevenson, R. J. Phenomenal and access consciousness in olfaction. Conscious. Cogn. 18, 1004–1017 (2009).

    PubMed  Google Scholar 

  116. Sekiwa, Y., Kubota, K. & Kobayashi, A. Characteristic flavor components in the brew of cooked clam (Meretrix lusoria) and the effect of storage on flavor formation. J. Agric. Food Chem. 45, 826–830 (1997).

    CAS  Google Scholar 

  117. Wilson, D. A. Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons. J. Neurophysiol. 90, 65–72 (2003). References 117, 147 and 148 comprise an important set of studies establishing that odour configural processing occurs in rodent anterior piriform cortex as a consequence of olfactory habituation; a non-associative form of perceptual learning. Insights from this study paved the way for a similar but human-based study that is described in reference 129.

    PubMed  Google Scholar 

  118. Gottfried, J. A., Winston, J. S. & Dolan, R. J. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49, 467–479 (2006).

    CAS  PubMed  Google Scholar 

  119. Kadohisa, M. & Wilson, D. A. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc. Natl Acad. Sci. USA 103, 15206–15211 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Schwob, J. E. & Price, J. L. The cortical projection of the olfactory bulb: development in fetal and neonatal rats correlated with quantitative variations in adult rats. Brain Res. 151, 369–374 (1978).

    CAS  PubMed  Google Scholar 

  121. Haberly, L. B. Neuronal circuitry in olfactory cortex: anatomy and functional implications. Chem. Senses 10, 219–238 (1985). An authoritative review of olfactory cortical anatomy and function. It was among the first to propose that the piriform cortex might serve as a content-addressable memory system for efficient perceptual reconstruction of odour inputs.

    Google Scholar 

  122. Kadohisa, M. & Wilson, D. A. Olfactory cortical adaptation facilitates detection of odors against background. J. Neurophysiol. 95, 1888–1896 (2006).

    PubMed  Google Scholar 

  123. Yoshida, I. & Mori, K. Odorant category profile selectivity of olfactory cortex neurons. J. Neurosci. 27, 9105–9114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lamme, V. A. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Linster, C., Henry, L., Kadohisa, M. & Wilson, D. A. Synaptic adaptation and odor-background segmentation. Neurobiol. Learn. Mem. 87, 352–360 (2007).

    PubMed  Google Scholar 

  126. Best, A. R., Thompson, J. V., Fletcher, M. L. & Wilson, D. A. Cortical metabotropic glutamate receptors contribute to habituation of a simple odor-evoked behavior. J. Neurosci. 25, 2513–2517 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yadon, C. A. & Wilson, D. A. The role of metabotropic glutamate receptors and cortical adaptation in habituation of odor-guided behavior. Learn. Mem. 12, 601–605 (2005).

    PubMed  PubMed Central  Google Scholar 

  128. Sobel, N. et al. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 83, 537–551 (2000). This pioneering olfactory fMRI experiment demonstrated that continuous odour stimulation elicits profound response habituation in the human piriform cortex, providing an important foundation for the design of subsequent fMRI studies.

    CAS  PubMed  Google Scholar 

  129. Li, W., Luxenberg, E., Parrish, T. & Gottfried, J. A. Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron 52, 1097–1108 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Verhagen, J. V., Wesson, D. W., Netoff, T. I., White, J. A. & Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nature Neurosci. 10, 631–639 (2007).

    CAS  PubMed  Google Scholar 

  131. Leinders-Zufall, T., Greer, C. A., Shepherd, G. M. & Zufall, F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J. Neurosci. 18, 5630–5639 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Duchamp-Viret, P., Duchamp, A. & Chaput, M. A. Peripheral odor coding in the rat and frog: quality and intensity specification. J. Neurosci. 20, 2383–2390 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. McGann, J. P. et al. Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48, 1039–1053 (2005).

    CAS  PubMed  Google Scholar 

  134. Wachowiak, M. et al. Inhibition [corrected] of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. J. Neurophysiol. 94, 2700–2712 (2005).

    CAS  PubMed  Google Scholar 

  135. Rosch, E. H. in Cognition and Categorization (eds Rosch, E. H. & Lloyd, B.) 27–48 (Erlbaum Associates, Hillsdale, New Jersey, 1978).

    Google Scholar 

  136. Miller, E. K., Nieder, A., Freedman, D. J. & Wallis, J. D. Neural correlates of categories and concepts. Curr. Opin. Neurobiol. 13, 198–203 (2003).

    CAS  PubMed  Google Scholar 

  137. Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D. & Gottfried, J. A. Odor quality coding and categorization in human posterior piriform cortex. Nature Neurosci. 12, 932–938 (2009). In this study, high-resolution olfactory fMRI was combined with multivariate pattern analyses to show that odour object categories are encoded as spatially distributed ensemble representations in the human posterior piriform cortex. These findings complement well the mouse data in reference 80.

    CAS  PubMed  Google Scholar 

  138. Kriegeskorte, N. & Bandettini, P. Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage 38, 649–662 (2007).

    PubMed  Google Scholar 

  139. Barnes, D. C., Hofacer, R. D., Zaman, A. R., Rennaker, R. L. & Wilson, D. A. Olfactory perceptual stability and discrimination. Nature Neurosci. 11, 1378–1380 (2008). This article presents compelling evidence for the role of rodent piriform cortex, but not olfactory bulb, in the perceptual pattern completion of degraded odour inputs.

    CAS  PubMed  Google Scholar 

  140. Laurent, G. A systems perspective on early olfactory coding. Science 286, 723–728 (1999).

    CAS  PubMed  Google Scholar 

  141. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    CAS  PubMed  Google Scholar 

  142. Cox, D. D. & Savoy, R. L. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

    PubMed  Google Scholar 

  143. Haushofer, J., Livingstone, M. S. & Kanwisher, N. Multivariate patterns in object-selective cortex dissociate perceptual and physical shape similarity. PLoS Biol. 6, e187 (2008).

    PubMed  PubMed Central  Google Scholar 

  144. Potter, B. The Tale of Samuel Whiskers, or The Roly-Poly Pudding (Frederick Warne & Co., London, 1908).

    Google Scholar 

  145. Gibson, E. J. An Odyssey in Learning and Perception (MIT Press, Cambridge, Massachusetts, 1991).

    Google Scholar 

  146. Goldstone, R. L. Perceptual learning. Annu. Rev. Psychol. 49, 585–612 (1998).

    CAS  PubMed  Google Scholar 

  147. Wilson, D. A. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79, 1425–1440 (1998).

    CAS  PubMed  Google Scholar 

  148. Wilson, D. A. Comparison of odor receptive field plasticity in the rat olfactory bulb and anterior piriform cortex. J. Neurophysiol. 84, 3036–3042 (2000).

    CAS  PubMed  Google Scholar 

  149. Pager, J. & Royet, J. P. Some effects of conditioned aversion on food intake and olfactory bulb electrical responses in the rat. J. Comp. Physiol. Psychol. 90, 67–77 (1976).

    CAS  PubMed  Google Scholar 

  150. Freeman, W. J. & Schneider, W. Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19, 44–56 (1982).

    CAS  PubMed  Google Scholar 

  151. Coopersmith, R., Lee, S. & Leon, M. Olfactory bulb responses after odor aversion learning by young rats. Brain Res. 389, 271–277 (1986).

    CAS  PubMed  Google Scholar 

  152. Wilson, D. A. & Sullivan, R. M. Neurobiology of associative learning in the neonate: early olfactory learning. Behav. Neural Biol. 61, 1–18 (1994).

    CAS  PubMed  Google Scholar 

  153. Sullivan, R. M. & Wilson, D. A. Dissociation of behavioral and neural correlates of early associative learning. Dev. Psychobiol. 28, 213–219 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Li, W., Howard, J. D., Parrish, T. B. & Gottfried, J. A. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science 319, 1842–1845 (2008). Following rodent models of aversive learning (references 149–153), this human imaging study demonstrated that previously indistinguishable odorants become discriminable after odour–footshock conditioning. This was observed both at the level of odour perception and at the level of functional MRI ensemble pattern activity in the human posterior piriform cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sabri, M., Radnovich, A. J., Li, T. Q. & Kareken, D. A. Neural correlates of olfactory change detection. Neuroimage 25, 969–974 (2005).

    PubMed  Google Scholar 

  156. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    CAS  PubMed  Google Scholar 

  157. Murakami, M., Kashiwadani, H., Kirino, Y. & Mori, K. State-dependent sensory gating in olfactory cortex. Neuron 46, 285–296 (2005).

    CAS  PubMed  Google Scholar 

  158. Rasch, B., Büchel, C., Gais, S. & Born, J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315, 1426–1429 (2007).

    CAS  PubMed  Google Scholar 

  159. Yeshurun, Y. & Sobel, N. An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Annu. Rev. Psychol. 61, 219–241, C211–215 (2010).

    PubMed  Google Scholar 

  160. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hasselmo, M. E., Wilson, M. A., Anderson, B. P. & Bower, J. M. Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harb. Symp. Quant. Biol. 55, 599–610 (1990).

    CAS  PubMed  Google Scholar 

  162. Wilson, M. & Bower, J. M. Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J. Neurophysiol. 67, 981–995 (1992).

    CAS  PubMed  Google Scholar 

  163. Kay, L. M. & Stopfer, M. Information processing in the olfactory systems of insects and vertebrates. Semin. Cell Dev. Biol. 17, 433–442 (2006).

    PubMed  Google Scholar 

  164. Cohen, Y., Reuveni, I., Barkai, E. & Maroun, M. Olfactory learning-induced long-lasting enhancement of descending and ascending synaptic transmission to the piriform cortex. J. Neurosci. 28, 6664–6669 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rinberg, D. & Gelperin, A. Olfactory neuronal dynamics in behaving animals. Semin. Cell Dev. Biol. 17, 454–461 (2006).

    PubMed  Google Scholar 

  166. Lin, D. Y., Zhang, S. Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477 (2005).

    CAS  PubMed  Google Scholar 

  167. Lin, D. Y., Shea, S. D. & Katz, L. C. Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50, 937–949 (2006).

    CAS  Google Scholar 

  168. Riffell, J. A., Lei, H., Christensen, T. A. & Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19, 335–340 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Riffell, J. A., Lei, H. & Hildebrand, J. G. Inaugural Article: Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc. Natl Acad. Sci. USA 106, 19219–19226 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zelano, C. & Sobel, N. Humans as an animal model for systems-level organization of olfaction. Neuron 48, 431–454 (2005).

    CAS  PubMed  Google Scholar 

  171. Parrish, T., Chen, Y. F., Li, W., Howard, J. & Gottfried, J. A. High resolution 3D functional images of the human olfactory bulb using Passband SSFP at 3T. ISMRM website [online], (2008).

  172. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).

    CAS  PubMed  Google Scholar 

  173. Buck, L. B. Olfactory receptors and odor coding in mammals. Nutr. Rev. 62, S184–188; discussion S224–141 (2004).

    PubMed  Google Scholar 

  174. Wachowiak, M. & Shipley, M. T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin. Cell Dev. Biol. 17, 411–423 (2006).

    PubMed  Google Scholar 

  175. Shepherd, G. M., Chen, W. R., Willhite, D., Migliore, M. & Greer, C. A. The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res. Rev. 55, 373–382 (2007).

    PubMed  Google Scholar 

  176. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS  PubMed  Google Scholar 

  177. Linster, C. et al. Perceptual correlates of neural representations evoked by odorant enantiomers. J. Neurosci. 21, 9837–9843 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Cleland, T. A., Morse, A., Yue, E. L. & Linster, C. Behavioral models of odor similarity. Behav. Neurosci. 116, 222–231 (2002).

    PubMed  Google Scholar 

  179. Maresh, A., Rodriguez Gil, D., Whitman, M. C. & Greer, C. A. Principles of glomerular organization in the human olfactory bulb — implications for odor processing. PLoS ONE 3, e2640 (2008). This important anatomical study suggests that the human olfactory bulb is organized in a fundamentally different way to the rodent analogue, raising questions about cross-species functional homologies.

    PubMed  PubMed Central  Google Scholar 

  180. Smith, G. E. Notes upon the natural subdivision of the cerebral hemisphere. J. Anat. Physiol. 35, 431–454 (1901).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sander, J. in Archiv für Anatomie, Physiologie und wissenschaftliche Medicin (eds Reichert, C. B. & Du Bois-Reymond, E.) 750–756 (Verlag von Veit et Comp., Leipzig, 1866).

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the members of the Gottfried Laboratory for helpful comments and suggestions. The author is supported by grants from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1

A brief primer on the pear-shaped cortex. (PDF 352 kb)

Related links

Related links

FURTHER INFORMATION

Jay A Gottfried's homepage

Glossary

Odours

Perceived smells that emanate from an odorant or mixture of odorants.

Odorant

A chemical stimulus that is capable of evoking a smell. In terrestrial animals, most odorants are organic molecules of low molecular weight that can gain airborne access to the olfactory system.

Configural odour perception

The perception of an odour mixture that differs from the perception of the mixture elements; that is, the mixture configuration is perceived holistically rather than as the sum of its parts.

Elemental odour perception

The perception of an odour mixture that is the same as the perception of the summed mixture elements.

Chemotopy

The idea that information about odorant chemical composition is projected onto topographically ordered spatial maps in the olfactory brain.

2-deoxyglucose methods

A functional brain mapping technique that uses radioactive 2-[14C]deoxyglucose to measure local metabolic patterns of activity-dependent glucose uptake in the central nervous system.

Odour quality

The perceptual character of a smell, such as mintiness, that emanates from an odorous object, as opposed to other perceptual features of a smell, such as intensity or pleasantness.

Focal electrical stimulation

An electrophysiological technique that limits the extent of electrical stimulation to single axon fibres. This permits quantification of synaptic transmission at the level of individual synapses.

Respiratory entrainment

The time at which odorant-evoked neural activity, usually in the form of single-unit spike firing, is most prominent during a particular phase of the respiratory cycle.

Prepotent responses

Behavioural responses with the greatest ('most potent') tendencies of being evoked by given sensory stimuli — often innate, reflexive responses.

Tuning specificity

The idea that the response activity (or 'tuning') of a given neuron is specific for a particular range of stimulus inputs. This tuning may be highly specific and 'narrow' (or non-specific and 'broad').

Olfactory valence

The appetitive or aversive nature of an olfactory stimulus.

Anosmia

Complete loss of the sense of smell, typically caused by trauma, infection or nasal–sinus disease, but often arising without an identifiable cause.

fMRI cross-adaptation

A paradigm based on the concept that sequential presentation of stimuli that share a particular feature, such as olfactory quality, causes response decline (or adaptation) in neural populations that are sensitive to that feature.

Figure–ground segmentation

The ability to discriminate, or segment, foreground details from background distracters. It is also referred to as figure–ground separation or segregation and is a necessary aspect of object perception.

Go/No-go task

In this classic discrimination task, animal or human subjects are required to make a response ('go') when presented with a particular stimulus cue and to withhold a response ('no-go') when presented with a different one.

Intraglomerular feedback inhibition

An important mechanism of synaptic inhibition in the olfactory bulb glomerulus, in which GABA (γ-aminobutyric acid)-ergic interneurons send direct inhibitory projections back to the same odour-activated mitral or tufted cells, forming a disynaptic feedback arc.

Cortical flattening algorithm

A computational method for unfolding a three-dimensional image of the brain into a flattened two-dimensional cortical sheet, making it easier to visualise topographical patterns of functional activity. These algorithms have been widely applied in retinotopic mapping of the primary visual cortex.

Multivariate fMRI analysis

A method of functional MRI data analysis designed to preserve activity-dependent signal change at the level of individual voxels and that allows the characterization of multi-voxel, pattern-based information within a brain region of interest.

Voxel-wise pattern

An ensemble pattern of functional MRI activity distributed spatially across a set of voxels.

Univariate fMRI analysis

A method of functional MRI data analysis in which data are spatially averaged and smoothed across trials, voxels and subjects, and that yields a mean estimate of peak fMRI activity for a given region of interest.

Pattern completion

A concept that is pertinent to content-addressable memory and in which an object-specific pattern representation can be fully reconstituted, or 'completed', from an incomplete stimulus input, helping to achieve perceptual constancy.

Virtual ensembles of single-unit activity

An analytical method that pools single-unit responses from different cells and different subjects into a virtual ensemble of a spatially distributed activity.

Pattern separation

The opposite of pattern completion. Learning and experience can induce a divergence, or 'separation', of object-specific pattern representations that were formerly overlapping, helping to enhance perceptual discrimination.

Perceptual learning

An increase in sensory acuity following a period of perceptual training that may or may not be explicit. The perceptual enhancement is relatively specific for the types of sensory stimuli that were encountered during initial learning.

Aversive conditioning

A type of associative learning paradigm in which a previously innocuous stimulus acquires behavioural salience after being repetitively paired with an aversive event such as an electric shock.

fMRI effective connectivity

A technique that is used to compute the causal links, or 'effects', that one brain region exerts on another, based on functional MRI data sets.

Signal fidelity

In the context of neural information processing and transformation, this term refers to how closely an output signal or representation corresponds to the input.

Content-addressable memory

A computationally robust form of associative memory that effectively functions as a reference table that allows the retrieval of specific memories in response to a particular smell.

Object coding

The neurobiological processes by which perceptually relevant information about an object is encoded or represented in the brain.

Diffusion-tensor imaging

An MRI technique that provides a three-dimensional image of water diffusion in the brain. As water diffuses more readily along the axis of myelinated nerve-fibre tracts, this method can be used to obtain a non-invasive estimate of anatomical connectivity between brain areas.

Transcranial magnetic stimulation

A method that involves applying local magnetic stimulation at the scalp to induce electrical excitation of the underlying cortical areas and their projections. The technique can be used to study cortical excitability and reorganization, as well as to disrupt or enhance activity in specific brain regions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottfried, J. Central mechanisms of odour object perception. Nat Rev Neurosci 11, 628–641 (2010). https://doi.org/10.1038/nrn2883

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing