Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular and clinical prodrome of Parkinson disease: implications for treatment

Abstract

The development of interventions to slow or prevent progression represents an important aim for current research into Parkinson disease (PD). General agreement prevails that success in this endeavor will depend on a clearer understanding of etiology and pathogenesis, and several important advances have recently been made, particularly in defining the genetic causes of PD. Studies of the biochemical consequences of the mutations that cause familial PD, and postmortem brain studies of idiopathic, sporadic PD, have highlighted mitochondrial dysfunction, oxidative stress, and protein metabolism by the ubiquitin–proteasomal and autophagy systems as being central to pathogenesis. In parallel with advances in etiopathogenesis, a clearer perception has developed of the clinical prodrome of PD, offering an opportunity to identify individuals who are at risk of PD, as well as those in the earliest clinical phase of the disease that might even precede the onset of motor symptoms. These populations are potentially the most suitable in which to test new protective therapies, and to study potential peripheral markers of disease progression. The awareness of the early symptomatic period of PD also raises the possibility of providing treatments that not only improve motor function but might also favorably modify outcome.

Key Points

  • The biochemical abnormalities that constitute the molecular prodrome of Parkinson disease (PD) can be initiated by genetic or environmental factors and seem to be common to familial and sporadic disease

  • The molecular prodrome will determine the pathology that evolves in PD and the associated cell dysfunction and death

  • The clinical prodrome will, in turn, reflect the evolving molecular and pathological prodromes and offers an important opportunity for early detection and therapeutic intervention

  • Future symptomatic and disease-modifying or neuroprotective drugs are likely to be based on interventions designed to interrupt the evolution of the molecular and pathological prodromes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for α-synuclein breakdown pathways.
Figure 2: Interconnecting pathways of Parkinson disease pathogenesis.

Similar content being viewed by others

References

  1. Schapira, A. H. Etiology of Parkinson's disease. Neurology 66 (10 Suppl. 4), S10–S23 (2006).

    Article  PubMed  Google Scholar 

  2. Gasser, T. Genomic and proteomic biomarkers for Parkinson disease. Neurology 72 (7 Suppl.), S27–S31 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Schapira, A. H. et al. Perspectives on recent advances in the understanding and treatment of Parkinson's disease. Eur. J. Neurol. 16, 1090–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Tolosa, E., Gaig, C., Santamaria, J. & Compta, Y. Diagnosis and the premotor phase of Parkinson disease. Neurology 72 (7 Suppl.), S12–S20 (2009).

    Article  PubMed  Google Scholar 

  5. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235–245 (2006).

    Article  PubMed  Google Scholar 

  6. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  7. Chaudhuri, K. R. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Lang, A. E. & Obeso, J. A. Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol. 3, 309–316 (2004).

    Article  PubMed  Google Scholar 

  9. Bras, J., Singleton, A., Cookson, M. R. & Hardy, J. Emerging pathways in genetic Parkinson's disease: potential role of ceramide metabolism in Lewy body disease. FEBS J. 275, 5767–5773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gupta, A., Dawson, V. L. & Dawson, T. M. What causes cell death in Parkinson's disease? Ann. Neurol. 64 (Suppl. 2), S3–S15 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schapira, A. H. Neurobiology and treatment of Parkinson's disease. Trends Pharmacol. Sci. 30, 41–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Martinez-Vicente, M. & Cuervo, A. M. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 6, 352–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Pan, T., Kondo, S., Le, W. & Jankovic, J. The role of autophagy–lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969–1978 (2008).

    Article  PubMed  Google Scholar 

  15. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Majeski, A. E. & Dice, J. F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 36, 2435–2444 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Dice, J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Fuchs, J. et al. Genetic variability in the SNCA gene influences α-synuclein levels in the blood and brain. FASEB J. 22, 1327–1334 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Chau, K. Y., Ching H. L., Schapira, A. H. & Cooper, J. M. Relationship between alpha synuclein phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson's disease pathogenesis. J. Neurochem. 110, 1005–1013 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Olanow, C. W. & Prusiner, S. B. Is Parkinson's disease a prion disorder? Proc. Natl Acad. Sci. USA 106, 12571–12572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schapira, A. H. et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1, 1269 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Schapira, A. H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 7, 97–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kuroda, Y. et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum. Mol. Genet. 15, 883–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Poole, A. C. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl Acad. Sci. USA 105, 1638–1643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, H., Dodson, M. W., Huang, H. & Guo, M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA 105, 14503–14508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Flinn, L. et al. Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain 132, 1613–1623 (2009).

    Article  PubMed  Google Scholar 

  34. Gegg, M. E., Cooper, J. M., Schapira, A. H. & Taanman, J. W. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE 4, e4756 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Grünewald, A. et al. Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp. Neurol. 219, 266–273 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. Gandhi, S. et al. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627–638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morais V. A. et al. Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1, 99–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Plun-Favreau, H. et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9, 1243–1252 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Taanman, J. W. et al. Analysis of mutant DNA polymerase γ in patients with mitochondrial DNA depletion. Hum. Mutat. 30, 248–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Hudson, G. et al. Mutation of the linker region of the polymerase γ-1 (POLG1) gene associated with progressive external ophthalmoplegia and parkinsonism. Arch. Neurol. 64, 553–557 (2007).

    Article  PubMed  Google Scholar 

  42. Taanman, J. W. & Schapira, A. H. Analysis of the trinucleotide CAG repeat from the DNA polymerase γ gene (POLG) in patients with Parkinson's disease. Neurosci. Lett. 376, 56–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Luoma, P. T. et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 69, 1152–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case–control study. Lancet Neurol. 7, 583–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, Y. et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 377, 975–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432–2443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci. 12, 1129–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greggio, E. et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906–16914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Plowey, E. D., Cherra, S. J., Liu, Y.-J. & Chu, C. T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048–1056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, Y. et al. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12, 826–828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Satake, W., Nakabayashi, Y., Mizuta, I. & Hirota, Y. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Simón-Sánchez, J., Schulte, C., Bras, J. M. & Sharma, M. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sidransk, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Article  Google Scholar 

  54. Haron-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977 (2004).

    Article  Google Scholar 

  55. Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132, 1783–1794 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Deganuto, M. et al. Altered intracellular redox status in Gaucher disease fibroblasts and impairment of adaptive response against oxidative stress. J. Cell. Physiol. 212, 223–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Gibb, W. R. & Lees, A. J. The progression of idiopathic Parkinson's disease is not explained by age-related changes. Clinical and pathological comparisons with post-encephalitic parkinsonian syndrome. Acta Neuropathol. 73, 195–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V. & Brooks, D. J. Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F]dopa PET. J. Neurol. Neurosurg. Psychiatry 64, 314–319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marek, K. et al. [123I]β-CIT SPECT imaging assessment of the rate of Parkinson's disease progression. Neurology 57, 2089–2094 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hawkes, C. H. The prodromal phase of sporadic Parkinson's disease: does it exist and if so how long is it? Mov. Disord. 23, 1799–1807 (2008).

    Article  PubMed  Google Scholar 

  62. Katzenschlager, R. & Lees, A. J. Olfaction and Parkinson's syndromes: its role in differential diagnosis. Curr. Opin. Neurol. 17, 417–423 (2004).

    Article  PubMed  Google Scholar 

  63. Ross, G. W. et al. Association of olfactory dysfunction with risk for future Parkinson's disease. Ann. Neurol. 63, 167–173 (2008).

    Article  PubMed  Google Scholar 

  64. Sommer, U. et al. Detection of presymptomatic Parkinson's disease: combining smell tests, transcranial sonography, and SPECT. Mov. Disord. 19, 1196–1202 (2004).

    Article  PubMed  Google Scholar 

  65. Ponsen, M. M. et al. Idiopathic hyposmia as a preclinical sign of Parkinson's disease. Ann. Neurol. 56, 173–181 (2004).

    Article  PubMed  Google Scholar 

  66. Bohnen, N. I., Studenski, S. A., Constantine, G. M. & Moore, R. Y. Diagnostic performance of clinical motor and non-motor tests of Parkinson disease: a matched case–control study. Eur. J. Neurol. 15, 685–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Schapira, A. H. Excessive daytime sleepiness in Parkinson's disease. Neurology 63 (8 Suppl. 3), S24–S27 (2004).

    Article  PubMed  Google Scholar 

  68. Schenck, C. H., Bundlie, S. R. & Mahowald, M. W. Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology 46, 388–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Iranzo, A. et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 5, 572–577 (2006).

    Article  PubMed  Google Scholar 

  70. Postuma, R. B., Lang, A. E., Massicotte-Marquez, J. & Montplaisir, J. Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology 66, 845–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Stiasny-Kolster, K. et al. Combination of 'idiopathic' REM sleep behaviour disorder and olfactory dysfunction as possible indicator for α-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 128, 126–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Bloch, A., Probst, A., Bissig, H., Adams, H. & Tolnay, M. α-Synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol. Appl. Neurobiol. 32, 284–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Minguez-Castellanos, A. et al. Do α-synuclein aggregates in autonomic plexuses predate Lewy body disorders? A cohort study. Neurology 68, 2012–2018 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Fujishiro, H. et al. Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson's disease. Mov. Disord. 23, 1085–1092 (2008).

    Article  PubMed  Google Scholar 

  75. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  76. Lees, A. J. The Parkinson chimera. Neurology 72 (7 Suppl.), S2–S11 (2009).

    Article  PubMed  Google Scholar 

  77. Dexter, D. T. et al. Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann. Neurol. 35, 38–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. DelleDonne, A. et al. Incidental Lewy body disease and preclinical Parkinson disease. Arch. Neurol. 65, 1074–1080 (2008).

    Article  PubMed  Google Scholar 

  79. Greffard, S. et al. Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch. Neurol. 63, 584–588 (2006).

    Article  PubMed  Google Scholar 

  80. Bezard, E. et el. Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease. J. Neurosci. 21, 6853–6861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schapira, A. H. et al. Novel pharmacological targets for the treatment of Parkinson's disease. Nat. Rev. Drug Discov. 5, 845–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Markham, C. H. & Diamond S. G. Evidence to support early levodopa therapy in Parkinson disease. Neurology 31, 125–131 (1981).

    Article  CAS  PubMed  Google Scholar 

  83. Grosset, D. et al. A multicentre longitudinal observational study of changes in self reported health status in people with Parkinson's disease left untreated at diagnosis. J. Neurol. Neurosurg. Psychiatry 78, 465–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Schapira, A. H. & Obeso, J. Timing of treatment initiation in Parkinson's disease: a need for reappraisal? Ann. Neurol. 59, 559–562 (2006).

    Article  PubMed  Google Scholar 

  85. Brotchie, J. & Fitzer-Attas, C. Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology 72 (7 Suppl.), S32–S38 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Olanow, C. W. et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N. Engl. J. Med. 361, 1268–1278 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Schapira, A. H. Molecular and clinical pathways to neuroprotection of dopaminergic drugs in Parkinson disease. Neurology 72 (7 Suppl.), S44–S50 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Schapira, A. H. Science, medicine, and the future: Parkinson's disease. BMJ 318, 311–314 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hart, R. G., Pearce, L. A., Ravina, B. M, Yaltho, T. C. & Marler, J. R. Neuroprotection trials in Parkinson's disease: systematic review. Mov. Disord. 24, 647–654 (2009).

    Article  PubMed  Google Scholar 

  90. Olanow, C. W., Kieburtz, K. & Schapira A. H. Why have we failed to achieve neuroprotection in Parkinson's disease? Ann. Neurol. 64 (Suppl. 2), S101–S110 (2008).

    CAS  PubMed  Google Scholar 

  91. Rascol, O. “Disease-modification” trials in Parkinson disease: target populations, endpoints and study design. Neurology 72 (7 Suppl.), S51–S58 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Olanow, C. W. et al. TCH346 as a neuroprotective drug in Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol. 5, 1013–1020 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Lang, A. E. When and how should treatment be started in Parkinson disease? Neurology 72 (7 Suppl.), S39–S43 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Goetz, C. G., Poewe W., Rascol, O. & Sampaio C. Evidence-based medical review update: pharmacological and surgical treatments of Parkinson's disease: 2001 to 2004. Mov. Disord. 20, 523–539 (2005).

    Article  PubMed  Google Scholar 

  95. Pahwa, R. et al. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66, 983–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Schapira, A. H. Treatment options in the modern management of Parkinson disease. Arch. Neurol. 64, 1083–1088 (2007).

    Article  PubMed  Google Scholar 

  97. Schapira, A. H., Emre, M., Jenner, P. & Poewe, W. Levodopa in the treatment of Parkinson's disease. Eur. J. Neurol. 16, 982–989 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony H. V. Schapira.

Ethics declarations

Competing interests

A. H. V. Schapira has acted as a consultant for and received honoraria from Boehringer, GlaxoSmithKline, Novartis-Orion and Teva-Lundbeck, and has received research support from Boehringer and Teva-Lundbeck. E. Tolosa declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schapira, A., Tolosa, E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6, 309–317 (2010). https://doi.org/10.1038/nrneurol.2010.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing