Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

25 years of neuroimaging in amyotrophic lateral sclerosis

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.

Key Points

  • Advanced neuroimaging techniques noninvasively evaluate brain structure, chemistry, neural network connections, metabolism, and receptor distribution in neurodegenerative diseases

  • Nervous system changes in amyotrophic lateral sclerosis (ALS) involve the motor cortex, corticospinal tract, corpus callosum, frontal lobes, basal ganglia, thalamus, brainstem and cervical spinal cord

  • Neuroimaging in ALS provides evidence of neuronal loss, white matter tract disruption, alterations in neural networks, γ-aminobutyric acid system dysfunction, and changes in brain metabolism

  • Advanced neuroimaging techniques provide unique opportunities to more fully characterize and classify the different motor neuron disease subtypes

  • ALS is a heterogeneous disease, and neuroimaging studies generally include small numbers of patients with long disease duration, which could limit the generalizability of results

  • MRI and PET show promise for development of ALS biomarkers, although additional research is required to translate these technologies for clinical application

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Advanced imaging of the motor cortex in ALS.
Figure 2: Changes in functional connectivity directly related to white matter damage in ALS.
Figure 3: Diffusion tensor imaging in ALS.
Figure 4: Diagnostic accurary of diffusion tensor imaging for amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Kumar, D. R., Aslinia, F., Yale, S. H. & Mazza, J. J. Jean-Martin Charcot: the father of neurology. Clin. Med. Res. 9, 46–49 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. Turner, M. R. MRI as a frontrunner in the search for amyotrophic lateral sclerosis biomarkers? Biomark. Med. 5, 79–81 (2011).

    PubMed  Google Scholar 

  3. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Zoccolella, S. et al. Predictors of delay in the diagnosis and clinical trial entry of amyotrophic lateral sclerosis patients: a population-based study. J. Neurol. Sci. 250, 45–49 (2006).

    PubMed  Google Scholar 

  5. Comi, G., Rovaris, M. & Leocani, L. Neuroimaging in amyotrophic lateral sclerosis. Eur. J. Neurol. 6, 629–637 (1999).

    CAS  PubMed  Google Scholar 

  6. Ngai, S., Tang, Y. M., Du, L. & Stuckey, S. Hyperintensity of the precentral gyral subcortical white matter and hypointensity of the precentral gyrus on fluid-attenuated inversion recovery: variation with age and implications for the diagnosis of amyotrophic lateral sclerosis. AJNR Am. J. Neuroradiol. 28, 250–254 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Deichmann, R., Good, C. D., Josephs, O., Ashburner, J. & Turner, R. Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage 12, 112–127 (2000).

    CAS  PubMed  Google Scholar 

  8. Traynor, C. R., Barker, G. J., Crum, W. R., Williams, S. C. & Richardson, M. P. Segmentation of the thalamus in MRI based on T1 and T2. Neuroimage 56, 939–950 (2011).

    PubMed  Google Scholar 

  9. Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    CAS  PubMed  Google Scholar 

  10. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA 97, 11050–11055 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Das, S. R., Avants, B. B., Grossman, M. & Gee, J. C. Registration based cortical thickness measurement. Neuroimage 45, 867–879 (2009).

    PubMed  Google Scholar 

  12. Chenevert, T. L., Brunberg, J. A. & Pipe, J. G. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177, 401–405 (1990).

    CAS  PubMed  Google Scholar 

  13. Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996).

    CAS  PubMed  Google Scholar 

  14. Dong, Q. et al. Clinical applications of diffusion tensor imaging. J. Magn. Reson. Imaging 19, 6–18 (2004).

    PubMed  Google Scholar 

  15. Castillo, M., Kwock, L. & Mukherji, S. K. Clinical applications of proton MR spectroscopy. AJNR Am. J. Neuroradiol. 17, 1–15 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalra, S. & Arnold, D. L. ALS surrogate markers. MRS. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 5 (Suppl. 1), 111–114 (2004).

    PubMed  Google Scholar 

  17. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Biswal, B. B., Van Kylen, J. & Hyde, J. S. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 10, 165–170 (1997).

    CAS  PubMed  Google Scholar 

  19. Turner, M. R. et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark. Med. 6, 319–337 (2012).

    CAS  PubMed  Google Scholar 

  20. Pike, V. W. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol. Sci. 30, 431–440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiernan, J. A. & Hudson, A. J. Frontal lobe atrophy in motor neuron diseases. Brain 117, 747–757 (1994).

    PubMed  Google Scholar 

  22. Ellis, C. M. et al. Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology 57, 1571–1578 (2001).

    CAS  PubMed  Google Scholar 

  23. Mezzapesa, D. M. et al. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am. J. Neuroradiol. 28, 255–259 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, J. L. et al. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology 65, 75–80 (2005).

    CAS  PubMed  Google Scholar 

  25. Kassubek, J. et al. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 6, 213–220 (2005).

    PubMed  Google Scholar 

  26. Grosskreutz, J. et al. Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurol. 6, 17 (2006).

    PubMed  PubMed Central  Google Scholar 

  27. Turner, M. R. et al. Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 8, 343–347 (2007).

    PubMed  Google Scholar 

  28. Agosta, F. et al. Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum. Brain Mapp. 28, 1430–1438 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Roccatagliata, L., Bonzano, L., Mancardi, G., Canepa, C. & Caponnetto, C. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 10, 47–52 (2009).

    PubMed  Google Scholar 

  30. Verstraete, E. et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 383–388 (2012).

    PubMed  Google Scholar 

  31. Agosta, F. et al. The cortical signature of amyotrophic lateral sclerosis. PLoS ONE 7, e42816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Libon, D. J. et al. Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology 26, 422–429 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Agosta, F. et al. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: a tensor based morphometry study. Amyotroph. Lateral Scler. 10, 168–174 (2009).

    PubMed  Google Scholar 

  34. Sudharshan, N. et al. Degeneration of the mid-cingulate cortex in amyotrophic lateral sclerosis detected in vivo with MR spectroscopy. AJNR Am. J. Neuroradiol. 32, 403–407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pyra, T. et al. Combined structural and neurochemical evaluation of the corticospinal tract in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 11, 157–165 (2010).

    CAS  PubMed  Google Scholar 

  36. Sarchielli, P. et al. Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. Neuroradiology 43, 189–197 (2001).

    CAS  PubMed  Google Scholar 

  37. Wang, S. et al. Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology 239, 831–838 (2006).

    PubMed  Google Scholar 

  38. Mitsumoto, H. et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 68, 1402–1410 (2007).

    CAS  PubMed  Google Scholar 

  39. Pohl, C. et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch. Neurol. 58, 729–735 (2001).

    CAS  PubMed  Google Scholar 

  40. Bowen, B. C. et al. MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am. J. Neuroradiol. 21, 647–658 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rule, R. R. et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 5, 141–149 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Abe, K. et al. Decrease in N-acetylaspartate/creatine ratio in the motor area and the frontal lobe in amyotrophic lateral sclerosis. Neuroradiology 43, 537–541 (2001).

    CAS  PubMed  Google Scholar 

  43. Lombardo, F. et al. Diffusion tensor MRI and MR spectroscopy in long lasting upper motor neuron involvement in amyotrophic lateral sclerosis. Arch. Ital. Biol. 147, 69–82 (2009).

    CAS  PubMed  Google Scholar 

  44. Schuff, N. et al. Reanalysis of multislice 1H MRSI in amyotrophic lateral sclerosis. Magn. Reson. Med. 45, 513–516 (2001).

    CAS  PubMed  Google Scholar 

  45. Bradley, W. G., Bowen, B. C., Pattany, P. M. & Rotta, F. 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. J. Neurol. Sci. 169, 84–86 (1999).

    CAS  PubMed  Google Scholar 

  46. Han, J. & Ma, L. Study of the features of proton MR spectroscopy (1H-MRS) on amyotrophic lateral sclerosis. J. Magn. Reson. Imaging 31, 305–308 (2010).

    PubMed  Google Scholar 

  47. Sivak, S. et al. Proton magnetic resonance spectroscopy in patients with early stages of amyotrophic lateral sclerosis. Neuroradiology 52, 1079–1085 (2010).

    PubMed  Google Scholar 

  48. van der Graaff, M. M. et al. MR spectroscopy findings in early stages of motor neuron disease. AJNR Am. J. Neuroradiol. 31, 1799–1806 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ellis, C. M. et al. A proton magnetic resonance spectroscopic study in ALS: correlation with clinical findings. Neurology 51, 1104–1109 (1998).

    CAS  PubMed  Google Scholar 

  50. Unrath, A., Ludolph, A. C. & Kassubek, J. Brain metabolites in definite amyotrophic lateral sclerosis. a longitudinal proton magnetic resonance spectroscopy study. J. Neurol. 254, 1099–1106 (2007).

    CAS  PubMed  Google Scholar 

  51. Kalra, S., Hanstock, C. C., Martin, W. R., Allen, P. S. & Johnston, W. S. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch. Neurol. 63, 1144–1148 (2006).

    PubMed  Google Scholar 

  52. Kaufmann, P. et al. Objective tests for upper motor neuron involvement in amyotrophic lateral sclerosis (ALS). Neurology 62, 1753–1757 (2004).

    CAS  PubMed  Google Scholar 

  53. Foerster, B. R. et al. Decreased motor cortex γ-aminobutyric acid in amyotrophic lateral sclerosis. Neurology 78, 1596–1600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mohammadi, B. et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp. Neurol. 217, 147–153 (2009).

    PubMed  Google Scholar 

  55. Jelsone-Swain, L. M. et al. Reduced interhemispheric functional connectivity in the motor cortex during rest in limb-onset amyotrophic lateral sclerosis. Front. Syst. Neurosci. 4, 158 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Tedeschi, G. et al. Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol. Aging 33, 886–898 (2012).

    PubMed  Google Scholar 

  57. Verstraete, E. et al. Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS ONE 2012, e13664 (2010).

    Google Scholar 

  58. Agosta, F. et al. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cereb. Cortex 21, 2291–2298 (2011).

    CAS  PubMed  Google Scholar 

  59. Douaud, G., Filippini, N., Knight, S., Talbot, K. & Turner, M. R. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 134, 3470–3479 (2011).

    PubMed  Google Scholar 

  60. Zanette, G. et al. Changes in motor cortex inhibition over time in patients with amyotrophic lateral sclerosis. J. Neurol. 249, 1723–1728 (2002).

    PubMed  Google Scholar 

  61. Kew, J. J. et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 116, 655–680 (1993).

    PubMed  Google Scholar 

  62. Turner, M. R. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601–609 (2004).

    CAS  PubMed  Google Scholar 

  63. Turner, M. R. et al. Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. Brain 128, 1323–1329 (2005).

    CAS  PubMed  Google Scholar 

  64. Turner, M. R. et al. Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J. Neurol. Neurosurg. Psychiatry 76, 1279–1285 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Turner, M. R. & Kiernan, M. C. Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotroph. Lateral Scler. 13, 245–250 (2012).

    PubMed  Google Scholar 

  66. Thivard, L. et al. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J. Neurol. Neurosurg. Psychiatry 78, 889–892 (2007).

    PubMed  PubMed Central  Google Scholar 

  67. Abe, O. et al. Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis. NMR Biomed. 17, 411–416 (2004).

    PubMed  Google Scholar 

  68. Agosta, F. et al. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am. J. Neuroradiol. 31, 1457–1461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cosottini, M. et al. Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology 237, 258–264 (2005).

    PubMed  Google Scholar 

  70. Cosottini, M. et al. Evaluation of corticospinal tract impairment in the brain of patients with amyotrophic lateral sclerosis by using diffusion tensor imaging acquisition schemes with different numbers of diffusion-weighting directions. J. Comput. Assist. Tomogr. 34, 746–750 (2010).

    PubMed  Google Scholar 

  71. Filippini, N. et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75, 1645–1652 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Iwata, N. K. et al. White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain 134, 2642–2655 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. Iwata, N. K. et al. Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology 70, 528–532 (2008).

    CAS  PubMed  Google Scholar 

  74. Sage, C. A., Peeters, R. R., Gorner, A., Robberecht, W. & Sunaert, S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 34, 486–499 (2007).

    PubMed  Google Scholar 

  75. Sach, M. et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127, 340–350 (2004).

    PubMed  Google Scholar 

  76. Chapman, M. C., Jelsone-Swain, L. M., Johnson, T. D., Gruis, K. L. & Welsh, R. C. Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. J. Magn. Res. Imaging http://dx.doi.org/10.1002/jmri.24218.

  77. Ben Bashat, D. et al. A potential tool for the diagnosis of ALS based on diffusion tensor imaging. Amyotroph. Lateral Scler. 12, 398–405 (2011).

    PubMed  Google Scholar 

  78. Stagg, C. J. et al. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 80, 610–615 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Metwalli, N. S. et al. Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res. 1348, 156–164 (2010).

    CAS  PubMed  Google Scholar 

  80. van der Graaff, M. M. et al. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain 134, 1211–1228 (2011).

    PubMed  Google Scholar 

  81. Ellis, C. M. et al. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53, 1051–1058 (1999).

    CAS  PubMed  Google Scholar 

  82. Prell, T. et al. Diffusion tensor imaging patterns differ in bulbar and limb onset amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg. http://dx.doi.org/10.1016/j.clineuro.2012.11.031.

  83. Blain, C. R. et al. Differential corticospinal tract degeneration in homozygous 'D90A' SOD-1 ALS and sporadic ALS. J. Neurol. Neurosurg. Psychiatry 82, 843–849 (2011).

    CAS  PubMed  Google Scholar 

  84. Schimrigk, S. K. et al. Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral sclerosis using a probabilistic mixture model. Am. J. Neuroradiol. 28, 724–730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Graham, J. M. et al. Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 63, 2111–2119 (2004).

    CAS  PubMed  Google Scholar 

  86. Senda, J. et al. Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: a study with tractography and diffusion-tensor imaging. Amyotroph. Lateral Scler. 10, 288–294 (2009).

    PubMed  Google Scholar 

  87. Ciccarelli, O. et al. Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. Hum. Brain Mapp. 30, 615–624 (2009).

    PubMed  Google Scholar 

  88. Toosy, A. T. et al. Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 74, 1250–1257 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Menke, R. A. et al. Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis. Arch. Neurol. 69, 1493–1499 (2012).

    PubMed  Google Scholar 

  90. Keil, C. et al. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neurosci. 13, 141 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Zhang, Y. et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging study. Amyotroph. Lateral Scler. 12, 421–429 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Agosta, F. et al. A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. J. Neurol. Neurosurg. Psychiatry 80, 53–55 (2009).

    CAS  PubMed  Google Scholar 

  93. Blain, C. R. et al. A longitudinal study of diffusion tensor MRI in ALS. Amyotroph. Lateral Scler. 8, 348–355 (2007).

    PubMed  Google Scholar 

  94. Verstraete, E., Veldink, J. H., Mandl, R. C., van den Berg, L. H. & van den Heuvel, M. P. Impaired structural motor connectome in amyotrophic lateral sclerosis. PLoS ONE 6, e24239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Yin, H. et al. Combined MR spectroscopic imaging and diffusion tensor MRI visualizes corticospinal tract degeneration in amyotrophic lateral sclerosis. J. Neurol. 251, 1249–1254 (2004).

    PubMed  Google Scholar 

  97. Govind, V. et al. Comprehensive evaluation of corticospinal tract metabolites in amyotrophic lateral sclerosis using whole-brain 1H MR spectroscopy. PLoS ONE 7, e35607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Song, S. K. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26, 132–140 (2005).

    PubMed  Google Scholar 

  99. Smith, M. C. Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 23, 269–282 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Song, S. K. et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722 (2003).

    PubMed  Google Scholar 

  101. Cirillo, M. et al. Widespread microstructural white matter involvement in amyotrophic lateral sclerosis: a whole-brain DTI study. AJNR Am. J. Neuroradiol. 33, 1102–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamauchi, H. et al. Corpus callosum atrophy in amyotrophic lateral sclerosis. J. Neurol. Sci. 134, 189–196 (1995).

    CAS  PubMed  Google Scholar 

  103. Chapman, M. C. et al. Corpus callosum area in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 13, 589–591 (2012).

    PubMed  PubMed Central  Google Scholar 

  104. Ashburner, J. & Friston, K. J. Why voxel-based morphometry should be used. Neuroimage 14, 1238–1243 (2001).

    CAS  PubMed  Google Scholar 

  105. Bartels, C. et al. Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system. Neuromuscul. Disord. 18, 398–407 (2008).

    PubMed  Google Scholar 

  106. Bak, T. H. & Chandran, S. What wires together dies together: verbs, actions and neurodegeneration in motor neuron disease. Cortex 48, 936–944 (2012).

    PubMed  Google Scholar 

  107. Abrahams, S. et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J. Neurol. 252, 321–331 (2005).

    PubMed  Google Scholar 

  108. Murphy, J. M. et al. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch. Neurol. 64, 530–534 (2007).

    PubMed  Google Scholar 

  109. Senda, J. et al. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph. Lateral Scler. 12, 59–69 (2011).

    PubMed  Google Scholar 

  110. Usman, U. et al. Mesial prefrontal cortex degeneration in amyotrophic lateral sclerosis: a high-field proton MR spectroscopy study. AJNR Am. J. Neuroradiol. 32, 1677–1680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarro, L. et al. Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. AJNR Am. J. Neuroradiol. 32, 1866–1872 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tsujimoto, M. et al. Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging. J. Neurol. Sci. 307, 34–40 (2011).

    PubMed  Google Scholar 

  113. Schreiber, H. et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J. Neurol. 252, 772–781 (2005).

    PubMed  Google Scholar 

  114. Abrahams, S. et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 119, 2105–2120 (1996).

    PubMed  Google Scholar 

  115. Tanaka, M. et al. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J. Neurol. Sci. 120, 22–28 (1993).

    CAS  PubMed  Google Scholar 

  116. Cistaro, A. et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur. J. Nucl. Med. Mol. Imaging 39, 251–259 (2012).

    CAS  PubMed  Google Scholar 

  117. Wicks, P. et al. Neuronal loss associated with cognitive performance in amyotrophic lateral sclerosis: an (11C)-flumazenil PET study. Amyotroph. Lateral Scler. 9, 43–49 (2008).

    CAS  PubMed  Google Scholar 

  118. Turner, M. R. et al. Cortical 5-HT1A receptor binding in patients with homozygous D90A SOD1 vs sporadic ALS. Neurology 68, 1233–1235 (2007).

    CAS  PubMed  Google Scholar 

  119. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharma, K. R., Sheriff, S., Maudsley, A. & Govind, V. Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J. Neuroimaging 23, 368–374 (2012).

    PubMed  PubMed Central  Google Scholar 

  121. Sharma, K. R., Saigal, G., Maudsley, A. A. & Govind, V. 1H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR Biomed. 24, 1270–1276 (2011).

    PubMed  PubMed Central  Google Scholar 

  122. Takahashi, H. et al. Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning. Lancet 342, 1016–1018 (1993).

    CAS  PubMed  Google Scholar 

  123. Pioro, E. P., Majors, A. W., Mitsumoto, H., Nelson, D. R. & Ng, T. C. 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology 53, 71–79 (1999).

    CAS  PubMed  Google Scholar 

  124. Johansson, A. et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J. Neurol. Sci. 255, 17–22 (2007).

    CAS  PubMed  Google Scholar 

  125. Valsasina, P. et al. Diffusion anisotropy of the cervical cord is strictly associated with disability in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 78, 480–484 (2007).

    CAS  PubMed  Google Scholar 

  126. Cohen-Adad, J. et al. Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 30–38 (2013).

    PubMed  Google Scholar 

  127. Ikeda, K. et al. Relationship between cervical cord 1H-magnetic resonance spectroscopy and clinoco-electromyographic profile in amyotrophic lateral sclerosis. Muscle Nerve 47, 61–67 (2013).

    CAS  PubMed  Google Scholar 

  128. Carew, J. D. et al. Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS. Neurology 77, 1370–1375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Carew, J. D. et al. Magnetic resonance spectroscopy of the cervical cord in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 185–191 (2011).

    CAS  PubMed  Google Scholar 

  130. Foerster, B. R. et al. Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad. Radiol. 19, 1075–1086 (2012).

    PubMed  PubMed Central  Google Scholar 

  131. Turner, M. R. et al. Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol. 10, 400–403 (2011).

    PubMed  Google Scholar 

  132. Welsh, R. C., Jelsone-Swain, L. M. & Foerster, B. R. The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front. Hum. Neurosci. 7, 1–7 (2013).

    Google Scholar 

  133. Testa, D., Lovati, R., Ferrarini, M., Salmoiraghi, F. & Filippini, G. Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 5, 208–212 (2004).

    PubMed  Google Scholar 

  134. Zoccolella, S. et al. Predictors of long survival in amyotrophic lateral sclerosis: a population-based study. J. Neurol. Sci. 268, 28–32 (2008).

    PubMed  Google Scholar 

  135. Kalra, S., Vitale, A., Cashman, N. R., Genge, A. & Arnold, D. L. Cerebral degeneration predicts survival in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 77, 1253–1255 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Agosta, F. et al. MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur. J. Neurosci. 32, 1490–1496 (2010).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B. R. Foerster and R. C. Welsh researched data for the article, made substantial contributions to discussion of the content, and wrote the article. E. L. Feldman contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Bradley R. Foerster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foerster, B., Welsh, R. & Feldman, E. 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 9, 513–524 (2013). https://doi.org/10.1038/nrneurol.2013.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing