Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potential circadian effects on translational failure for neuroprotection

An Author Correction to this article was published on 13 June 2020

This article has been updated

Abstract

Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches—normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-d-aspartic acid (NMDA) antagonist MK801—in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in ‘active-phase’ than in ‘inactive-phase’ rodent neurons. αPBN and MK801 reduced neuronal death only in ‘inactive-phase’ neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuroprotection in rodent models of stroke.
Fig. 2: Comparisons of penumbra after focal cerebral ischaemia.
Fig. 3: Effects of circadian cycles on response to OGD and neuroprotection.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Source Data associated with Figures and Extended Data are available online.

Change history

References

  1. Logan, R. W. & McClung, C. A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 20, 49–65 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cederroth, C. R. et al. Medicine in the fourth dimension. Cell Metab. 30, 238–250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. VISTA Database http://www.virtualtrialsarchives.org/vista/ (2019).

  4. Ding, J. et al. The effect of normobaric oxygen in patients with acute stroke: a systematic review and meta-analysis. Neurol. Res. 40, 433–444 (2018).

    PubMed  Google Scholar 

  5. Green, A. R., Ashwood, T., Odergren, T. & Jackson, D. M. Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol. Ther. 100, 195–214 (2003).

    CAS  PubMed  Google Scholar 

  6. Schurr, A. Neuroprotection against ischemic/hypoxic brain damage: blockers of ionotropic glutamate receptor and voltage sensitive calcium channels. Curr. Drug Targets 5, 603–618 (2004).

    CAS  PubMed  Google Scholar 

  7. Neuhaus, A. A., Couch, Y., Hadley, G. & Buchan, A. M. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain 140, 2079–2092 (2017).

    PubMed  Google Scholar 

  8. Campbell, B. C., Meretoja, A., Donnan, G. A. & Davis, S. M. Twenty-year history of the evolution of stroke thrombolysis with intravenous alteplase to reduce long-term disability. Stroke 46, 2341–2346 (2015).

    PubMed  Google Scholar 

  9. Campbell, B. C. V. et al. Endovascular stent thrombectomy: the new standard of care for large vessel ischaemic stroke. Lancet Neurol. 14, 846–854 (2015).

    PubMed  Google Scholar 

  10. Pritchett, D. & Reddy, A. B. Circadian clocks in the hematologic system. J. Biol. Rhythms 30, 374–388 (2015).

    CAS  PubMed  Google Scholar 

  11. Schulz, J. B. et al. Facilitation of postischemic reperfusion with α-PBN: assessment using NMR and Doppler flow techniques. Am. J. Physiol. 272, H1986–H1995 (1997).

    CAS  PubMed  Google Scholar 

  12. Buchan, A. & Pulsinelli, W. A. Hypothermia but not the N-methyl-d-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J. Neurosci. 10, 311–316 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lo, E. H. A new penumbra: transitioning from injury into repair after stroke. Nat. Med. 14, 497–500 (2008).

    CAS  PubMed  Google Scholar 

  14. Donnan, G. A., Baron, J. C., Ma, H. & Davis, S. M. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 8, 261–269 (2009).

    CAS  PubMed  Google Scholar 

  15. Heiss, W. D. Experimental evidence of ischemic thresholds and functional recovery. Stroke 23, 1668–1672 (1992).

    CAS  PubMed  Google Scholar 

  16. Hossmann, K. A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36, 557–565 (1994).

    CAS  PubMed  Google Scholar 

  17. Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Chen, C. Y. et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 113, 206–211 (2016).

    ADS  CAS  PubMed  Google Scholar 

  19. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    ADS  CAS  PubMed  Google Scholar 

  20. Fan, J., Dawson, T. M. & Dawson, V. L. Cell death mechanisms of neurodegeneration. Adv. Neurobiol. 15, 403–425 (2017).

    PubMed  Google Scholar 

  21. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    CAS  PubMed  Google Scholar 

  22. Marshall, J. W., Duffin, K. J., Green, A. R. & Ridley, R. M. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke 32, 190–198 (2001).

    CAS  PubMed  Google Scholar 

  23. Marshall, J. W., Cummings, R. M., Bowes, L. J., Ridley, R. M. & Green, A. R. Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke 34, 2228–2233 (2003).

    CAS  PubMed  Google Scholar 

  24. Paschos, G. K. & FitzGerald, G. A. Circadian clocks and vascular function. Circ. Res. 106, 833–841 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Durgan, D. J., Crossland, R. F. & Bryan, R. M. Jr. The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea. J. Cereb. Blood Flow Metab. 37, 2806–2819 (2017).

    PubMed  Google Scholar 

  26. Musiek, E. S. et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Invest. 123, 5389–5400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi, Y., Ye, Z. & Hensch, T. K. Clock genes control cortical critical period timing. Neuron 86, 264–275 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

    CAS  PubMed  Google Scholar 

  29. Lo, E. H., Dalkara, T. & Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4, 399–415 (2003).

    CAS  PubMed  Google Scholar 

  30. Shi, L. et al. A new era for stroke therapy: integrating neurovascular protection with optimal reperfusion. J. Cereb. Blood Flow Metab. 38, 2073–2091 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Poli, S. & Veltkamp, R. Oxygen therapy in acute ischemic stroke—experimental efficacy and molecular mechanisms. Curr. Mol. Med. 9, 227–241 (2009).

    CAS  PubMed  Google Scholar 

  32. Buchan, A. M., Slivka, A. & Xue, D. The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res. 574, 171–177 (1992).

    CAS  PubMed  Google Scholar 

  33. Cao, X. & Phillis, J. W. α-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 644, 267–272 (1994).

    CAS  PubMed  Google Scholar 

  34. Pschorn, U. & Carter, A. J. The influence of repeated doses, route and time of administration on the neuroprotective effects of BIII 277 CL in a rat model of focal cerebral ischemia. J. Stroke Cerebrovasc. Dis. 6, 93–99 (1996).

    CAS  PubMed  Google Scholar 

  35. Folbergrová, J., Zhao, Q., Katsura, K. & Siesjö, B. K. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc. Natl Acad. Sci. USA 92, 5057–5061 (1995).

    ADS  PubMed  PubMed Central  Google Scholar 

  36. Reimherr, F. W., Wood, D. R. & Wender, P. H. The use of MK-801, a novel sympathomimetic, in adults with attention deficit disorder, residual type. Psychopharmacol. Bull. 22, 237–242 (1986).

    CAS  PubMed  Google Scholar 

  37. Shuaib, A. et al. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med. 357, 562–571 (2007).

    CAS  PubMed  Google Scholar 

  38. Vinall, P. E., Kramer, M. S., Heinel, L. A. & Rosenwasser, R. H. Temporal changes in sensitivity of rats to cerebral ischemic insult. J. Neurosurg. 93, 82–89 (2000).

    CAS  PubMed  Google Scholar 

  39. Tischkau, S. A., Cohen, J. A., Stark, J. T., Gross, D. R. & Bottum, K. M. Time-of-day affects expression of hippocampal markers for ischemic damage induced by global ischemia. Exp. Neurol. 208, 314–322 (2007).

    CAS  PubMed  Google Scholar 

  40. Beker, M. C. et al. Time-of-day dependent neuronal injury after ischemic stroke: implication of circadian clock transcriptional factor Bmal1 and survival kinase Akt. Mol. Neurobiol. 55, 2565–2576 (2018).

    CAS  PubMed  Google Scholar 

  41. Ali, K., Cheek, E., Sills, S., Crome, P. & Roffe, C. Day-night differences in oxygen saturation and the frequency of desaturations in the first 24 hours in patients with acute stroke. J. Stroke Cerebrovasc. Dis. 16, 239–244 (2007).

    PubMed  Google Scholar 

  42. Kim, B. J. et al. Ischemic stroke during sleep: its association with worse early functional outcome. Stroke 42, 1901–1906 (2011).

    PubMed  Google Scholar 

  43. Karmarkar, S. W. & Tischkau, S. A. Influences of the circadian clock on neuronal susceptibility to excitotoxicity. Front. Physiol. 4, 313 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Wang, T. A. et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337, 839–842 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghorbel, M. T., Coulson, J. M. & Murphy, D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1α and CLOCK in transcriptional activation of the vasopressin gene. Mol. Cell. Neurosci. 22, 396–404 (2003).

    CAS  PubMed  Google Scholar 

  46. Lorenzano, S. et al. Early molecular oxidative stress biomarkers of ischemic penumbra in acute stroke. Neurology 93, e1288–e1298 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from the National Institutes of Health (K99MH120053 (I.Ş.), R01NS091230 and R01MH111359 (S.S.)), the Rappaport Foundation (E.H.L.), the Chinese Ministry of Education (X.J.), and the National Research Foundation of Korea (J.-H.P.). The authors thank J. Lipton, M. Ning and W. Deng for discussions, Y. Sun and all team members of the MGH 149-8 animal facility for help with light schedule switching, and M. Ali and K. R. Lees for generous assistance and expert analysis of the VISTA database.

Author information

Authors and Affiliations

Authors

Contributions

Performed experiments and/or analysed data: (E.E., W.L., E.T.M., J.-H.P., I. Ş., S.G., J.S., J. Lan, J. Lee, K.H.); designed experiments (E.E., W.L., E.T.M., J.-H.P., I. Ş., S.S., E.H.L.); wrote and/or revised manuscript (E.E., W.L., E.T.M., K.H., X.J., E.H.L.); funding and support (J.-H.P., S.S., X.J., E.H.L.).

Corresponding author

Correspondence to Eng H. Lo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks John Hogenesch, Costantino Iadecola and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Clot lysis.

Rates of tissue-plasminogen activator-induced clot lysis were not significantly different in blood drawn from day-time (ZT3–9, n = 5) or night-time (ZT15–21, n = 8) male C57BL/6 mice. Mean ± s.e.m., repeated-measures ANOVA; P = 0.80.

Source Data

Extended Data Fig. 2 Effects of αPBN on reperfusion.

Laser Doppler flowmetry showed that αPBN (100 mg kg−1) did not affect reperfusion profiles after 60-min transient focal ischaemia in ZT3–9 or ZT15–21 male C57BL/6 mice. Mean ± s.e.m., n = 4 per group, repeated-measures ANOVA; P = 0.87.

Source Data

Extended Data Fig. 3 MK801 did not significantly affect body temperature after permanent focal cerebral ischaemia.

White bars, ZT3–9; grey bars, ZT15–21; male C57BL/6 mice. Mean ± s.e.m., n = 4 per group, repeated-measures ANOVA; P = 0.97.

Source Data

Extended Data Fig. 4 Physiological parameters for laser speckle imaging experiments in Fig. 2.

n = 4 mice per group; mean ± s.e.m., two-tailed t-test.

Source Data

Extended Data Fig. 5 Quantification of blood flow.

Speckle imaging data were used to quantify blood flow in terms of absolute blood flow (ml per 100 g per min). Blood flow histograms show the presence of cerebral ischaemia in the ipsilateral hemispheres (top). Thresholded areas between 25 and 55 ml per 100 g per min (see Methods) were significantly smaller in ZT17–19 than in ZT5–7 C57BL/6 male mice (bottom; n = 4 per group, two-tailed t-test).

Source Data

Extended Data Fig. 6 Circadian gene expression and patterns in different species.

Top, comparison of circadian gene patterns between mice, rats, nonhuman primates and humans. Bottom, expression of selected circadian genes in C57BL/6 male mouse and Sprague–Dawley male rat somatosensory cortex (n = 4 per group).

Source Data

Extended Data Fig. 7 Blood cortisol levels.

No significant differences were detected in blood cortisol levels of ZT3–9 versus ZT15–21 C57BL/6 male mice subjected to similar handling procedures as cerebral ischaemia mice. Mean ± s.e.m., n = 5 mice per group, two-tailed t-test.

Source Data

Extended Data Table 1 Physiological parameters, laser doppler flow, mortality, inclusion and exclusions for neuroprotection experiments in Fig. 1

Supplementary information

Supplementary Figure

This file contains the uncropped gel images.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, E., Li, W., T. Mandeville, E. et al. Potential circadian effects on translational failure for neuroprotection. Nature 582, 395–398 (2020). https://doi.org/10.1038/s41586-020-2348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2348-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing