Skip to main content
Log in

Visual Field Defects with Vigabatrin

Epidemiology and Therapeutic Implications

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Vigabatrin is an antiepileptic drug (AED) that acts as a selective irreversible inhibitor of γ-aminobutyric acid (GABA) transaminase. In 1997, 3 cases of severe symptomatic and persistent visual field constriction associated with vigabatrin treatment were described. During 1997 to 1998, similar concentric visual field constrictions were described in patients with drug-resistant epilepsy who were receiving vigabatrin concurrently with other AEDs. However, a study of patients treated with vigabatrin monotherapy alone showed that there was a causal relationship between vigabatrin treatment and the specific bilateral concentric visual field constriction.

The Marketing Authorisation Holders survey (involving 335 vigabatrin recipients aged >14 years) indicated that 31% of patients [95% confidence interval (CI) 26 to 36%] had a visual field defect attributable to vigabatrin, compared with a 0% incidence of visual field defects (upper 95% CI 3%) in an unexposed control group. Other studies in adults have given similar overall prevalences, with a total of 169 of 528 patients diagnosed with vigabatrin-associated field defects (32%, 95% CI 28 to 36%). Male gender seems to be associated with an increase in the relative risk of visual field loss of approximately 2-fold.

The pattern of defect is typically a bilateral, absolute concentric constriction of the visual field, the severity of which varies from mild to severe. Data gathered so far suggest that the cumulative incidence increases rapidly during the first 2 years of treatment and within the first 2kg of vigabatrin intake, stabilising at 3 years and after a total vigabatrin dose of 3kg. The prevalence of vigabatrin-associated field defects seems to be lower in children, but there are also methodological problems and greater variability in the assessment of visual fields in children.

There is particular concern that the increased risk of the visual field defects will outweigh the benefit of the drug in patients who could be controlled with other AEDs. Vigabatrin should currently be used only in combination with other AEDs for patients with resistant partial epilepsy when all other appropriate drug combinations have proved inadequate or have not been tolerated. Regular visual field testing should be performed before the start of treatment and at regular intervals during treatment. Patients with pre-existent visual field defects due to other causes should not be treated with vigabatrin. Currently, the benefits of treating infantile spasms with vigabatrin monotherapy seem to outweigh the risks, but further prospective studies and follow-up of children receiving treatment are needed to evaluate the place of vigabatrin in this indication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I

Similar content being viewed by others

References

  1. Schechter PJ, Tranier Y, Jung MJ, et al. Audiogenic seizure protection by elevated brain GABA concentration in mice: effects of gamma-acetylenic GABA and gamma-vinyl GABA, two irreversible GABA-T inhibitors. Eur J Pharmacol 1977; 45: 319–28

    Article  CAS  PubMed  Google Scholar 

  2. Butler WH, Ford GP, Newberne JW. A study of the effects of vigabatrin on the central nervous system and retina of Sprague-Dawley and Lister-Hooded rats. Toxicol Pathol 1987; 15: 143–8

    Article  CAS  PubMed  Google Scholar 

  3. Gibson JP, Yarrington JT, Loudy DE, et al. Chronic toxicity studies with vigabatrin, a GABA-transaminase inhibitor. Toxicol Pathol 1990; 18: 225–38

    Article  CAS  PubMed  Google Scholar 

  4. Neal MJ, Cunningham JR, Shah MA, et al. Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina. Neurosci Lett 1989; 98: 29–32

    Article  CAS  PubMed  Google Scholar 

  5. Cubells JF, Blanchard JS, Makman MH. The effects of in vivo inactivation of GABA-transaminase and glutamic acid decarboxylase on levels of GABA in the rat retina. Brain Res 1987; 419: 208–15

    Article  CAS  PubMed  Google Scholar 

  6. Neal MJ, Shah MA. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina. Br J Pharmacol 1990; 100: 324–8

    Article  CAS  PubMed  Google Scholar 

  7. Sills GJ, Patsalos PN, Butler E, et al. Pharmacokinetic and pharmacodynamic profile of vigabatrin and tiagabine in rat brain and eye. 5th Eilat Conference on New Antiepileptic Drugs; 2000 Jun 25–29; Eilat, 61

  8. Pow DV, Baldridge W, Crook DK. Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy. Neuroscience 1996; 73: 1129–43

    Article  CAS  PubMed  Google Scholar 

  9. Crook DK, Pow DV. Analysis of the distribution of glycine and GABA in amacrine cells of the developing rabbit retina: a comparison with the ontogeny of a functional GABA transport system in retinal neurons. Vis Neurosci 1997; 14:751–63

    Article  CAS  PubMed  Google Scholar 

  10. Butler WH. The neuropathology of vigabatrin. Epilepsia 1989; 30 Suppl. 2: 15S–7S

    Article  Google Scholar 

  11. Cannon DJ, Butler WH, Mumford JP, et al. Neuropathological findings in patients receiving long-term vigabatrin therapy for chronic intractable epilepsy. J Child Neurol 1991; 6Suppl.2: 17S–24S

    Google Scholar 

  12. Sivenius J, Paljärvi L, Vapalahti M, et al. Vigabatrin (gamma-vinyl-GABA): neuropathologic evaluation of five patients. Epilepsia 1993; 34: 193–6

    Article  CAS  PubMed  Google Scholar 

  13. Dieterle L, Becker EW, Berg PA, et al. Allergisches Vaskulitis durch Vigabatrin. Nervenarzt 1994; 65: 122–4

    CAS  PubMed  Google Scholar 

  14. Crofts K, Brennan R, Kearney P, et al. Vigabatrin-induced optic neuropathy. J Neurol 1997; 10: 666–7

    Article  Google Scholar 

  15. Anderson DR. Permetry with and without automation. St Louis (MO): Mosby Co., 1987

    Google Scholar 

  16. Manji H, Plant GT. Epilepsy surgery, visual fields, and driving: a study of the visual field criteria for driving in patients after temporal lobe epilepsy surgery with a comparison of Goldmann and Esterman perimeter. J Neurol Neurosurg Psychiatry 2000; 68: 80–2

    Article  CAS  PubMed  Google Scholar 

  17. Beck RW, Bergström TJ, Lichter PR. A clinical comparison of visual field testing with a new automated perimetet, the Humphrey Field Analyser, and the Goldmann perimeter. Ophthalmology 1985; 92: 77–82

    CAS  PubMed  Google Scholar 

  18. Carr RE, Heckenlively JR. Hereditary pigmentary degenerations of the retina. In: Tasman W, Jaeger EA, editors. Duane’s clinical ophthalmology. Philadelphia (PA): Lippicott-Raven Publishers, 1996; Vol. 3; 24: 1–28

    Google Scholar 

  19. Lowes M. Peripheral visual field restriction in chloroquine retinopathy. Acta Ophthalmol 1976; 54: 819–26

    CAS  Google Scholar 

  20. Brinton G, Norton E, Zahn J, et al. Ocular quinine toxicity. Am J Ophthalmol 1980; 90: 403–10

    CAS  PubMed  Google Scholar 

  21. Trojan H. Gesichtsfeldbefunde bei symptomatischen Epilepsie. Klin Monatsbl Augenheilkd 1967; 150: 718–21

    CAS  PubMed  Google Scholar 

  22. Zrenner E, Nowicki J. Medikamentös induzierte Funktionsstörungen der Zapfenfunktion und Zapfeninteraktion. Fortschr Ophthalmol 1985; 82: 589–94

    CAS  PubMed  Google Scholar 

  23. Bayer A. Retinale Funktionsstörungen bei Patienten unter antikonvulsiven Therapie [medical thesis]. Tübingen: University of Tübingen, 1991

    Google Scholar 

  24. Lorenz R, Kuck H. Visuelle Störungen durch Diphenylhydantoin: klinische und electroophthalmologische Befunde. Klin Monatsbl Augenheilkd 1988; 192: 244–7

    Article  CAS  PubMed  Google Scholar 

  25. Elder MJ. Diazepam and its effects on visual fields. Aust N Z J Ophthalmol 1992; 20: 267–70

    Article  CAS  PubMed  Google Scholar 

  26. Faedda MT, Giallonardo AT, Marcetti A, et al. Terapia con vigabatrin nelle epilessie partziali resistenti. G Neuropsicofarmacol 1993; 15: 105–8

    Google Scholar 

  27. Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. BMJ 1997; 314: 180–1

    Article  CAS  PubMed  Google Scholar 

  28. Blackwell N, Hayllar J, Kelly G. Severe persistent visual constriction associated with vigabatrin: patients taking vigabatrin should have regular visual field testing. BMJ 1997; 314: 1694

    CAS  PubMed  Google Scholar 

  29. Wilson EA, Brodie MJ. Severe persistent visual constriction associated with vigabatrin: chronic refractory epilepsy may have a role in causing these unusual lesions. BMJ 1997; 314: 1693

    Article  CAS  PubMed  Google Scholar 

  30. Wong ICK, Mawer GE, Sander JWAS. Severe persistent visual constriction associated with vigabatrin: reaction may be dose dependent. BMJ 1997; 314: 1693–4

    CAS  PubMed  Google Scholar 

  31. Harding GFA. Severe persistent visual constriction associated with vigabatrin: four possible explanations exist. BMJ 1997; 314: 1694

    Article  CAS  PubMed  Google Scholar 

  32. Kramer G, Scollo-Lavizzari G, Jallon P, et al. Vigabatrin-associated bilateral concentric visual field defects in four patients. Epilepsia 1997; 38: 179

    Article  Google Scholar 

  33. Mackenzie R, Klistorner A. Severe persistent visual constriction associated with vigabatrin: asymptomatic as well as symptomatic defects occur with vigabatrin. BMJ 1998; 316: 232

    Article  Google Scholar 

  34. Krauss GL, Johnson MA, Miller NR. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophtalmologic findings. Neurology 1998; 50: 614–8

    Article  CAS  PubMed  Google Scholar 

  35. Ruether K, Pung T, Kellner U, et al. Electrophysiologic evaluation of a patient with peripheral visual field contraction associated with vigabatrin. Arch Ophthalmol 1998; 116: 817–9

    CAS  PubMed  Google Scholar 

  36. Beran R, Currie J, Sandbach J, et al. Visual field restriction with new antiepileptic medication. Epilepsia 1998; 39Suppl. 2: 6S

    Google Scholar 

  37. Leach JP, Rao P, Ahlfat F, et al. Vigabatrin and visual field defects: is there a link? Epilepsia 1998; 39 Suppl.: 58S

    Google Scholar 

  38. Backstrom JT, Hinkle RL, Flicker MR. Manufacturers have started several studies. BMJ 1997; 314: 1693

    Google Scholar 

  39. Bjelajac A, Gautam M, Logan WJ. Vigabatrin and ophthalmologic abnormalities in pediatric patients. Neurology 1999; 52: 236

    Google Scholar 

  40. Tiel-Wilck K, Jokiel B, Zinser P, et al. Afferent visual function after single dose application of gamma-vinyl-GABA. Neuroophthalmology 1995; 15: 305–10

    Article  Google Scholar 

  41. Harding GFA, Robertson KA, Edson AS, et al. Visual electrophysiological effect of a GABA transaminase blocker. Doc Ophthalmol 1999; 97: 179–88

    Article  CAS  Google Scholar 

  42. Daneshvar H, Racette L, Coupland SG, et al. Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology 1999; 106: 1792–8

    Article  CAS  PubMed  Google Scholar 

  43. Wild JM, Martinez C, Reinshagen G, et al. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999; 40: 1784–94

    Article  CAS  PubMed  Google Scholar 

  44. Kälviäinen R, Nousiainen I, Mäntyjärvi M, et al. Vigabatrin, a gabaergic drug, causes concentric visual field defects. Neurology 1999; 53: 922–6

    Article  PubMed  Google Scholar 

  45. Hardus P, Verduin WM, Postma G, et al. Concentric contraction of the visual field in patients with temporal lobe epilepsy and its association with the use of vigabatrin medication. Epilepsia 2000; 41: 581–7

    Article  CAS  PubMed  Google Scholar 

  46. Arndt CF, Derambure P, Defoort-Dhellemmes S, et al. Outer retinal dysfunction in patients treated with vigabatrin. Neurology 1999; 52: 1201–5

    Article  CAS  PubMed  Google Scholar 

  47. Lawden MC, Eke T, Degg C, et al. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry 1999; 67: 716–22

    Article  CAS  PubMed  Google Scholar 

  48. Manuchehri K, Goodman S, Sivitel L, et al. A controlled study of vigabatrin and visual abnormalities. Br J Ophthalmol 2000; 84: 499–505

    Article  CAS  PubMed  Google Scholar 

  49. Wilton LV, Stephens MDB, Mann RD. Visual field defect associated with vigabatrin: observational cohort study. BMJ 1999; 319: 1165–6

    Article  CAS  PubMed  Google Scholar 

  50. Midelfart A. Means of selecting patients was misleading [letter]. BMJ 2000; 320: 1403

    Article  Google Scholar 

  51. Schmitz B, Jokiel B, Schmidt T, et al. Visual field defects under treatment with vigabatrin, carbamazepine and valproate: a prospective study. Epilepsia 1999; 40: 257

    Article  Google Scholar 

  52. Miller NR, Johnson MA, Paul SR, et al. Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology 1999; 53: 2082–7

    Article  CAS  PubMed  Google Scholar 

  53. Rebolleda G, Munoz-Negrete FJ, Gutierrez C. Screening of patients taking vigabatrin [letter]. Ophthalmology 2000; 207: 1219–20

    Article  Google Scholar 

  54. Specchio L, Bellizzi M, La Neve A, et al. Visual impairment in adult epileptic patients treated with vigabatrin. Neurology 2000; 54: 308

    Article  Google Scholar 

  55. Stefan H, Bernatik J, Knorr J. Gesichtsfeldstörungen bei Antiepileptikabehandlung. Nervenartz 1999; 70: 552–5

    Article  CAS  Google Scholar 

  56. Committee for proprietary medicinal products. Opinion following an article 12 referral. Vigabatrin. Then European Agency for the Evaluation of Medicinal products. Committee for Proprietary Medicinal Products (CPMP) — report/1357/99

  57. Wohlrab G, Boltshauser E, Schmitt B, et al. Visual field constriction is not limited to children treated with vigabatrin. Neuropediatrics 1999; 30: 130–2

    Article  CAS  PubMed  Google Scholar 

  58. Gross-Tsur V, Banin E, Shahar E, et al. Visual impairment in children with epilepsy treated with vigabatrin. Ann Neurol 2000; 48: 60–4

    Article  CAS  PubMed  Google Scholar 

  59. Rintahaka P, Granström ML, Lappi M, et al. Visual field defects in vigabatrin-treated children with epilepsy. Epilepsia 2000; 41(7 Suppl.): 196–7

    Google Scholar 

  60. Versino M, Veggiotti P. Reversibility of vigabatrin-induced visual-field defect. Lancet 1999; 354: 486

    Article  CAS  PubMed  Google Scholar 

  61. Vanhatalo S, Pääkkönen L. Visual field constriction in children treated with vigabatrin. Neurology 1999; 52: 1713–4

    Article  CAS  PubMed  Google Scholar 

  62. Hardus P, Verduin WM, Postma G, et al. Long-term changes in the visual fields of patients with temporal lobe epilepsy using vigabatrin. Br J Ophthalmol 2000; 84: 788–90

    Article  CAS  PubMed  Google Scholar 

  63. Johnson MA, Krauss GL, Miller NR, et al. Visual function loss from vigabatrin: effect of stopping the drug. Neurology 2000; 55: 40–5

    Article  CAS  PubMed  Google Scholar 

  64. Kramer G, Reid S, Landau K, et al. Vigabatrin: reversibility of severe concentric visual field defects after early detection and drug withdrawal: a case report. Epilepsia 2000; 41 (Suppl. Florence): 144

    Article  Google Scholar 

  65. Krakow K, Polizzi G, Riordan-Eva P, et al. Recovery of visual field constriction following discontinuation of vigabatrin. Seizure 2000; 9: 287–90

    Article  CAS  PubMed  Google Scholar 

  66. Steinhoff B, Freudenthaler N, Paulus W. The influence of established and new antiepileptic drugs on visual perception. I. A placebo-controlled, double blind, single-dose study in healthy volunteers. Epilepsy Res 1997; 29: 35–47

    Article  CAS  PubMed  Google Scholar 

  67. Sartucci F, Massetani R, Galli R, et al. Visual contrast sensitivity in carbamazepine-resistant epileptic patients receiving vigabatrin as add-on therapy. J Epilepsy 1997; 10: 7–11

    Article  Google Scholar 

  68. Besch D, Safran AB, Kurtenbach A, et al. Visual field defects and inner retinal dysfunction associated with vigabatrin. Invest Ophthalmol Vis Sci 2000; 41: 892S

    Google Scholar 

  69. Nousiainen I, Kälviäinen R, Mäntyjärvi M. Contrast and glare sensitivity in epilepsy patients treated with vigabatrin or carbamazepine monotherapy. Br J Ophthalmol 2000; 84: 622–5

    Article  CAS  PubMed  Google Scholar 

  70. Nousiainen I, Kälviäinen R, Mäntyjärvi M. Color vision in epilepsy patients treated with vigabatrin or carbamazepine monotherapy. Ophthalmology 2000; 107: 884–8

    Article  CAS  PubMed  Google Scholar 

  71. Ponjavic V, Gränse L, Andreasson S, et al. Multifocal-ERG and full-field ERG in patients on vigabatrin medication. Invest Ophthalmol Vis Sci 2000; 41: 242S

    Google Scholar 

  72. Crompton J, Ravindran J, Blumbergs P, et al. Vigabatrin induced visual field loss: pathological correclations. Neuroophthalmology 2000; 23: 204

    Google Scholar 

  73. Mervaala E, Partanen J, Nousiainen U, et al. Electrophysiologic effects of gamma-vinyl GABA and carbamazepine. Epilepsia 1989; 30: 189–93

    Article  CAS  PubMed  Google Scholar 

  74. Kälviäinen R, Äikiä M, Saukkonen A, et al. Vigabatrin vs carbamazepine monotherapy in patients with newly diagnosed epilepsy. Arch Neurol 1995; 52: 989–96

    Article  PubMed  Google Scholar 

  75. Harding GFA, Jones LA, Tipper VJ, et al. Electroretinogram, pattern electroretinogram, and visual evoked potential assessment in patients receiving vigabatrin. Epilepsia 1995; 36: 108S

    Article  Google Scholar 

  76. Mauguiére F, Chauvel P, Dewailly J, et al. No effect of long-term vigabatrin treatment on central nervous system conduction in patients with refractory epilepsy: results of a multicenter study of somatosensory and visual evoked potentials. Epilepsia 1997; 39: 301–8

    Article  Google Scholar 

  77. Kupenova P, Vitanova L, Mitova L, et al. Partipitation of the GABAergic system of the turtle retina in the light adaptation process. Acta Physiol Scand 1991; 141: 203–10

    Article  Google Scholar 

  78. Arnarsson A, Eysteinsson T. The role of GABA in modulating the Xenopus electroretinogram. Vis Neurosci 1997; 14: 1143–52

    Article  CAS  PubMed  Google Scholar 

  79. Horiguchi M, Suzuki S, Kondo M, et al. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits. Invest Ophthalmol Vis Sci 1998; 39: 2171–6

    CAS  PubMed  Google Scholar 

  80. Herbert M, Starreveld E, Kherani F, et al. Reduction in scotopic oscillatory potantials is strongly correlated with the duration of vigabatrin therapy. Invest Ophthalmol Vis Sci 2000; 41: 591S

    Google Scholar 

  81. Westall CA, Smith K, Logan WJ, et al. Longitudinal investigation of ERGs in children on vigabatrin therapy. Invest Ophthalmol Vis Sci 2000; 41: 35S

    Google Scholar 

  82. Brigell MG, Wild JM, Ruckh S. The effect of vigabatrin on visual function: data from a long-term open-label add-on trial in patients with uncontrolled partial seizures. Neurology 2000; 54: 308

    Article  Google Scholar 

  83. Laplace O, Rigolet H, Nordmann JP. Electro-oculogram in epileptic patients treated by vigabatrin: efficacy or toxicity test? Invest Ophthalmol Vis Sci 2000; 41: 78

    Google Scholar 

  84. Chadwick D. Safety and efficacy of vigabatrin and carbamazepine in newly diagnosed epilepsy: a multicentre randomised double-blind study. Lancet 1999; 354: 13–9

    Article  CAS  PubMed  Google Scholar 

  85. Marson AG, Kadir ZA, Hutton JL, et al. The new antiepileptic drugs: a systematic review of their efficacy and tolerability. Epilepsia 1997; 38: 859–80

    Article  CAS  PubMed  Google Scholar 

  86. Cramer JA, Fisher R, Ben-Menachem E, et al. New antiepileptic drugs: comparison of key clinical trials. Epilepsia 1999; 40: 590–600

    Article  CAS  PubMed  Google Scholar 

  87. Osborne JP, Edwards SW, Hancock E, et al. Infantile spasms and vigabatrin: study will compare effects of drugs. BMJ 1999; 318: 56–7

    Article  CAS  PubMed  Google Scholar 

  88. Vigabatrin Advisory Group. Guideline for prescribing vigabatrin in children has been revised. BMJ 2000; 320: 1404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reetta Kälviäinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kälviäinen, R., Nousiainen, I. Visual Field Defects with Vigabatrin. Mol Diag Ther 15, 217–230 (2001). https://doi.org/10.2165/00023210-200115030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200115030-00005

Keywords

Navigation