Chaperone-assisted selective autophagy is essential for muscle maintenance

Curr Biol. 2010 Jan 26;20(2):143-8. doi: 10.1016/j.cub.2009.11.022. Epub 2010 Jan 7.

Abstract

How are biological structures maintained in a cellular environment that constantly threatens protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein assembly essential for actin anchoring in striated muscles, which is subjected to mechanical, thermal, and oxidative stress during contraction [1]. Based on the characterization of the Drosophila melanogaster cochaperone Starvin (Stv), we define a conserved chaperone machinery required for Z disk maintenance. Instead of keeping Z disk proteins in a folded conformation, this machinery facilitates the degradation of damaged components, such as filamin, through chaperone-assisted selective autophagy (CASA). Stv and its mammalian ortholog BAG-3 coordinate the activity of Hsc70 and the small heat shock protein HspB8 during disposal that is initiated by the chaperone-associated ubiquitin ligase CHIP and the autophagic ubiquitin adaptor p62. CASA is thus distinct from chaperone-mediated autophagy, previously shown to facilitate the ubiquitin-independent, direct translocation of a client across the lysosomal membrane [2]. Impaired CASA results in Z disk disintegration and progressive muscle weakness in flies, mice, and men. Our findings reveal the importance of chaperone-assisted degradation for the preservation of cellular structures and identify muscle as a tissue that highly relies on an intact proteostasis network, thereby shedding light on diverse myopathies and aging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy*
  • Drosophila Proteins / physiology*
  • Drosophila melanogaster / physiology*
  • Muscles / physiology*

Substances

  • Drosophila Proteins
  • stv protein, Drosophila