Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling

Hum Brain Mapp. 2014 Jul;35(7):3152-69. doi: 10.1002/hbm.22392. Epub 2013 Oct 18.

Abstract

Theories positing that the cerebellum contributes to cognitive as well as motor control are driven by two sources of information: (1) studies highlighting connections between the cerebellum and both prefrontal and motor territories, (2) functional neuroimaging studies demonstrating cerebellar activations evoked during the performance of both cognitive and motor tasks. However, almost no studies to date have combined these two sources of information and investigated cortico-cerebellar connectivity during task performance. Through the use of a novel neuroimaging tool (Meta-Analytic Connectivity Modelling) we demonstrate for the first time that cortico-cerebellar connectivity patterns seen in anatomical studies and resting fMRI are also present during task performance. Consistent with human and nonhuman primate anatomical studies cerebellar lobules Crus I and II were significantly coactivated with prefrontal and parietal cortices during task performance, whilst lobules HV, HVI, HVIIb, and HVIII were significantly coactivated with the pre- and postcentral gyrus. An analysis of the behavioral domains showed that these circuits were driven by distinct tasks. Prefrontal-parietal-cerebellar circuits were more active during cognitive and emotion tasks whilst motor-cerebellar circuits were more active during action execution tasks. These results highlight the separation of prefrontal and motor cortico-cerebellar loops during task performance, and further demonstrate that activity within these circuits relates to distinct functions.

Keywords: cerebellum; cognition; meta-analytic connectivity modeling.

MeSH terms

  • Animals
  • Brain Mapping*
  • Cerebellum / anatomy & histology*
  • Cerebellum / physiology*
  • Cerebral Cortex / anatomy & histology*
  • Cerebral Cortex / physiology*
  • Functional Laterality
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Meta-Analysis as Topic
  • Motor Activity / physiology
  • Neural Pathways / physiology*